Commit
·
19f20a1
1
Parent(s):
67fa2ba
feat: updated push to hub flow
Browse files
src/distilabel_dataset_generator/apps/faq.py
CHANGED
@@ -27,6 +27,10 @@ with gr.Blocks() as app:
|
|
27 |
|
28 |
<p>The current implementation is based on <a href="https://huggingface.co/docs/api-inference/index" target="_blank">Free Serverless Hugging Face Inference Endpoints</a>. They are rate limited but free to use for anyone on the Hugging Face Hub. You can re-use the underlying pipeline to generate data with other <a href="https://distilabel.argilla.io/dev/components-gallery/llms/" target="_blank">distilabel LLM integrations</a>.</p>
|
29 |
|
|
|
|
|
|
|
|
|
30 |
<h4 style="text-align: center;">What is distilabel?</h4>
|
31 |
|
32 |
<p>Distilabel is the framework for synthetic data and AI feedback for engineers who need fast, reliable and scalable pipelines based on verified research papers.</p>
|
|
|
27 |
|
28 |
<p>The current implementation is based on <a href="https://huggingface.co/docs/api-inference/index" target="_blank">Free Serverless Hugging Face Inference Endpoints</a>. They are rate limited but free to use for anyone on the Hugging Face Hub. You can re-use the underlying pipeline to generate data with other <a href="https://distilabel.argilla.io/dev/components-gallery/llms/" target="_blank">distilabel LLM integrations</a>.</p>
|
29 |
|
30 |
+
<h4 style="text-align: center;">Can I run this locally?</h4>
|
31 |
+
|
32 |
+
<p>Yes, you can run this locally by <a href="https://huggingface.co/spaces/argilla/distilabel-datacraft?clone=true" target="_blank">cloning the Space</a> and installing the requirements with `pip install -r requirements.txt` and running `python app.py`. Alternatively, you can install the <a href="https://github.com/argilla-io/distilabel" target="_blank">distilabel library</a> with `pip install distilabel[hf-inference-endpoints]` and use the pipeline code at the bottom of each application tab. Distilabel also supports running the pipeline with <a href="https://distilabel.argilla.io/latest/components-gallery/llms/" target="_blank">other LLMs</a>.</p>
|
33 |
+
|
34 |
<h4 style="text-align: center;">What is distilabel?</h4>
|
35 |
|
36 |
<p>Distilabel is the framework for synthetic data and AI feedback for engineers who need fast, reliable and scalable pipelines based on verified research papers.</p>
|
src/distilabel_dataset_generator/apps/sft.py
CHANGED
@@ -4,6 +4,7 @@ import time
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
|
|
7 |
from distilabel.distiset import Distiset
|
8 |
from huggingface_hub import upload_file
|
9 |
|
@@ -69,17 +70,7 @@ def generate_sample_dataset(system_prompt, progress=gr.Progress()):
|
|
69 |
return result
|
70 |
|
71 |
|
72 |
-
def
|
73 |
-
system_prompt: str,
|
74 |
-
num_turns: int = 1,
|
75 |
-
num_rows: int = 5,
|
76 |
-
private: bool = True,
|
77 |
-
org_name: str = None,
|
78 |
-
repo_name: str = None,
|
79 |
-
oauth_token: OAuthToken = None,
|
80 |
-
progress=gr.Progress(),
|
81 |
-
is_sample: bool = False,
|
82 |
-
):
|
83 |
repo_id = (
|
84 |
f"{org_name}/{repo_name}"
|
85 |
if repo_name is not None and org_name is not None
|
@@ -90,15 +81,16 @@ def generate_dataset(
|
|
90 |
raise gr.Error(
|
91 |
"Please provide a `repo_name` and `org_name` to push the dataset to."
|
92 |
)
|
|
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
if num_rows < 5:
|
103 |
duration = 25
|
104 |
elif num_rows < 10:
|
@@ -137,24 +129,37 @@ def generate_dataset(
|
|
137 |
|
138 |
distiset = result_queue.get()
|
139 |
|
140 |
-
if repo_id is not None:
|
141 |
-
progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
|
142 |
-
distiset.push_to_hub(
|
143 |
-
repo_id=repo_id,
|
144 |
-
private=private,
|
145 |
-
include_script=True,
|
146 |
-
token=oauth_token,
|
147 |
-
)
|
148 |
-
|
149 |
# If not pushing to hub generate the dataset directly
|
150 |
distiset = distiset["default"]["train"]
|
151 |
if num_turns == 1:
|
152 |
outputs = distiset.to_pandas()[["prompt", "completion"]]
|
153 |
else:
|
154 |
outputs = distiset.to_pandas()[["messages"]]
|
|
|
155 |
|
156 |
progress(1.0, desc="Dataset generation completed")
|
157 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
|
160 |
def upload_pipeline_code(
|
@@ -182,7 +187,7 @@ with gr.Blocks(
|
|
182 |
) as app:
|
183 |
with gr.Row():
|
184 |
gr.Markdown(
|
185 |
-
"
|
186 |
)
|
187 |
with gr.Row():
|
188 |
gr.Column()
|
@@ -269,22 +274,30 @@ with gr.Blocks(
|
|
269 |
maximum=500,
|
270 |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
271 |
)
|
272 |
-
|
273 |
with gr.Row(variant="panel"):
|
274 |
org_name = get_org_dropdown()
|
275 |
repo_name = gr.Textbox(
|
276 |
label="Repo name", placeholder="dataset_name", value="my-distiset"
|
277 |
)
|
278 |
private = gr.Checkbox(
|
279 |
-
label="Private dataset",
|
|
|
|
|
|
|
280 |
)
|
281 |
with gr.Row() as regenerate_row:
|
282 |
gr.Column(scale=1)
|
283 |
btn_generate_full_dataset = gr.Button(
|
284 |
-
value="Generate
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
)
|
286 |
-
gr.Column(scale=1)
|
287 |
|
|
|
288 |
with gr.Row():
|
289 |
final_dataset = gr.DataFrame(
|
290 |
value=DEFAULT_DATASETS[0],
|
@@ -292,6 +305,7 @@ with gr.Blocks(
|
|
292 |
interactive=False,
|
293 |
wrap=True,
|
294 |
)
|
|
|
295 |
with gr.Row():
|
296 |
success_message = gr.Markdown(visible=False)
|
297 |
|
@@ -340,16 +354,37 @@ with gr.Blocks(
|
|
340 |
outputs=[success_message],
|
341 |
).then(
|
342 |
fn=generate_dataset,
|
343 |
-
inputs=[
|
344 |
-
system_prompt,
|
345 |
-
num_turns,
|
346 |
-
num_rows,
|
347 |
-
private,
|
348 |
-
org_name,
|
349 |
-
repo_name,
|
350 |
-
],
|
351 |
outputs=[final_dataset],
|
352 |
show_progress=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
).then(
|
354 |
fn=upload_pipeline_code,
|
355 |
inputs=[pipeline_code, org_name, repo_name],
|
|
|
4 |
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
+
from datasets import Dataset
|
8 |
from distilabel.distiset import Distiset
|
9 |
from huggingface_hub import upload_file
|
10 |
|
|
|
70 |
return result
|
71 |
|
72 |
|
73 |
+
def _check_push_to_hub(org_name, repo_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
repo_id = (
|
75 |
f"{org_name}/{repo_name}"
|
76 |
if repo_name is not None and org_name is not None
|
|
|
81 |
raise gr.Error(
|
82 |
"Please provide a `repo_name` and `org_name` to push the dataset to."
|
83 |
)
|
84 |
+
return repo_id
|
85 |
|
86 |
+
|
87 |
+
def generate_dataset(
|
88 |
+
system_prompt: str,
|
89 |
+
num_turns: int = 1,
|
90 |
+
num_rows: int = 5,
|
91 |
+
is_sample: bool = False,
|
92 |
+
progress=gr.Progress(),
|
93 |
+
):
|
94 |
if num_rows < 5:
|
95 |
duration = 25
|
96 |
elif num_rows < 10:
|
|
|
129 |
|
130 |
distiset = result_queue.get()
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
# If not pushing to hub generate the dataset directly
|
133 |
distiset = distiset["default"]["train"]
|
134 |
if num_turns == 1:
|
135 |
outputs = distiset.to_pandas()[["prompt", "completion"]]
|
136 |
else:
|
137 |
outputs = distiset.to_pandas()[["messages"]]
|
138 |
+
dataframe = pd.DataFrame(outputs)
|
139 |
|
140 |
progress(1.0, desc="Dataset generation completed")
|
141 |
+
return dataframe
|
142 |
+
|
143 |
+
|
144 |
+
def push_to_hub(
|
145 |
+
dataframe,
|
146 |
+
private: bool = True,
|
147 |
+
org_name: str = None,
|
148 |
+
repo_name: str = None,
|
149 |
+
oauth_token: OAuthToken = None,
|
150 |
+
):
|
151 |
+
distiset = Distiset(
|
152 |
+
{
|
153 |
+
"default": Dataset.from_pandas(dataframe),
|
154 |
+
}
|
155 |
+
)
|
156 |
+
distiset.push_to_hub(
|
157 |
+
repo_id=f"{org_name}/{repo_name}",
|
158 |
+
private=private,
|
159 |
+
include_script=True,
|
160 |
+
token=oauth_token,
|
161 |
+
)
|
162 |
+
return dataframe
|
163 |
|
164 |
|
165 |
def upload_pipeline_code(
|
|
|
187 |
) as app:
|
188 |
with gr.Row():
|
189 |
gr.Markdown(
|
190 |
+
"Want to run this locally or with other LLMs? Take a look at the FAQ tab. DataCraft is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation."
|
191 |
)
|
192 |
with gr.Row():
|
193 |
gr.Column()
|
|
|
274 |
maximum=500,
|
275 |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
276 |
)
|
|
|
277 |
with gr.Row(variant="panel"):
|
278 |
org_name = get_org_dropdown()
|
279 |
repo_name = gr.Textbox(
|
280 |
label="Repo name", placeholder="dataset_name", value="my-distiset"
|
281 |
)
|
282 |
private = gr.Checkbox(
|
283 |
+
label="Private dataset",
|
284 |
+
value=True,
|
285 |
+
interactive=True,
|
286 |
+
scale=0.5,
|
287 |
)
|
288 |
with gr.Row() as regenerate_row:
|
289 |
gr.Column(scale=1)
|
290 |
btn_generate_full_dataset = gr.Button(
|
291 |
+
value="Generate", variant="primary", scale=2
|
292 |
+
)
|
293 |
+
btn_generate_and_push_to_hub = gr.Button(
|
294 |
+
value="Generate and Push to Hub", variant="primary", scale=2
|
295 |
+
)
|
296 |
+
btn_push_to_hub = gr.Button(
|
297 |
+
value="Push to Hub", variant="primary", scale=2
|
298 |
)
|
|
|
299 |
|
300 |
+
gr.Column(scale=1)
|
301 |
with gr.Row():
|
302 |
final_dataset = gr.DataFrame(
|
303 |
value=DEFAULT_DATASETS[0],
|
|
|
305 |
interactive=False,
|
306 |
wrap=True,
|
307 |
)
|
308 |
+
|
309 |
with gr.Row():
|
310 |
success_message = gr.Markdown(visible=False)
|
311 |
|
|
|
354 |
outputs=[success_message],
|
355 |
).then(
|
356 |
fn=generate_dataset,
|
357 |
+
inputs=[system_prompt, num_turns, num_rows],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
358 |
outputs=[final_dataset],
|
359 |
show_progress=True,
|
360 |
+
)
|
361 |
+
btn_generate_and_push_to_hub.click(
|
362 |
+
fn=hide_success_message,
|
363 |
+
outputs=[success_message],
|
364 |
+
).then(
|
365 |
+
fn=generate_dataset,
|
366 |
+
inputs=[system_prompt, num_turns, num_rows],
|
367 |
+
outputs=[final_dataset],
|
368 |
+
show_progress=True,
|
369 |
+
).then(
|
370 |
+
fn=push_to_hub,
|
371 |
+
inputs=[final_dataset, private, org_name, repo_name],
|
372 |
+
outputs=[final_dataset],
|
373 |
+
show_progress=True,
|
374 |
+
).then(
|
375 |
+
fn=upload_pipeline_code,
|
376 |
+
inputs=[pipeline_code, org_name, repo_name],
|
377 |
+
outputs=[],
|
378 |
+
).success(
|
379 |
+
fn=show_success_message,
|
380 |
+
inputs=[org_name, repo_name],
|
381 |
+
outputs=[success_message],
|
382 |
+
)
|
383 |
+
|
384 |
+
btn_push_to_hub.click(
|
385 |
+
fn=push_to_hub,
|
386 |
+
inputs=[final_dataset, private, org_name, repo_name],
|
387 |
+
outputs=[final_dataset],
|
388 |
).then(
|
389 |
fn=upload_pipeline_code,
|
390 |
inputs=[pipeline_code, org_name, repo_name],
|