Commit
·
71fd9c5
1
Parent(s):
fedb936
feat: add token roulation logic
Browse files
src/distilabel_dataset_generator/pipelines/sft.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
import os
|
2 |
-
|
3 |
import pandas as pd
|
4 |
from distilabel.llms import InferenceEndpointsLLM
|
5 |
from distilabel.pipeline import Pipeline
|
6 |
from distilabel.steps import KeepColumns
|
7 |
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
8 |
|
|
|
|
|
9 |
INFORMATION_SEEKING_PROMPT = (
|
10 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
11 |
" range of topics. Your purpose is to assist users in finding specific facts,"
|
@@ -139,6 +139,7 @@ _STOP_SEQUENCES = [
|
|
139 |
" \n\n",
|
140 |
]
|
141 |
DEFAULT_BATCH_SIZE = 1
|
|
|
142 |
|
143 |
|
144 |
def _get_output_mappings(num_turns):
|
@@ -189,15 +190,18 @@ if __name__ == "__main__":
|
|
189 |
|
190 |
|
191 |
def get_pipeline(num_turns, num_rows, system_prompt):
|
|
|
192 |
input_mappings = _get_output_mappings(num_turns)
|
193 |
output_mappings = input_mappings
|
|
|
|
|
194 |
if num_turns == 1:
|
195 |
with Pipeline(name="sft") as pipeline:
|
196 |
magpie = MagpieGenerator(
|
197 |
llm=InferenceEndpointsLLM(
|
198 |
model_id=MODEL,
|
199 |
tokenizer_id=MODEL,
|
200 |
-
api_key=
|
201 |
magpie_pre_query_template="llama3",
|
202 |
generation_kwargs={
|
203 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
@@ -218,7 +222,7 @@ def get_pipeline(num_turns, num_rows, system_prompt):
|
|
218 |
llm=InferenceEndpointsLLM(
|
219 |
model_id=MODEL,
|
220 |
tokenizer_id=MODEL,
|
221 |
-
api_key=
|
222 |
generation_kwargs={"temperature": 0.8, "max_new_tokens": 1024},
|
223 |
),
|
224 |
system_prompt=system_prompt,
|
@@ -239,7 +243,7 @@ def get_pipeline(num_turns, num_rows, system_prompt):
|
|
239 |
llm=InferenceEndpointsLLM(
|
240 |
model_id=MODEL,
|
241 |
tokenizer_id=MODEL,
|
242 |
-
api_key=
|
243 |
magpie_pre_query_template="llama3",
|
244 |
generation_kwargs={
|
245 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
@@ -262,9 +266,12 @@ def get_pipeline(num_turns, num_rows, system_prompt):
|
|
262 |
|
263 |
|
264 |
def get_prompt_generation_step():
|
|
|
|
|
|
|
265 |
generate_description = TextGeneration(
|
266 |
llm=InferenceEndpointsLLM(
|
267 |
-
api_key=
|
268 |
model_id=MODEL,
|
269 |
tokenizer_id=MODEL,
|
270 |
generation_kwargs={
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
from distilabel.llms import InferenceEndpointsLLM
|
3 |
from distilabel.pipeline import Pipeline
|
4 |
from distilabel.steps import KeepColumns
|
5 |
from distilabel.steps.tasks import MagpieGenerator, TextGeneration
|
6 |
|
7 |
+
from src.distilabel_dataset_generator.utils import HF_TOKENS
|
8 |
+
|
9 |
INFORMATION_SEEKING_PROMPT = (
|
10 |
"You are an AI assistant designed to provide accurate and concise information on a wide"
|
11 |
" range of topics. Your purpose is to assist users in finding specific facts,"
|
|
|
139 |
" \n\n",
|
140 |
]
|
141 |
DEFAULT_BATCH_SIZE = 1
|
142 |
+
TOKEN_INDEX = 0
|
143 |
|
144 |
|
145 |
def _get_output_mappings(num_turns):
|
|
|
190 |
|
191 |
|
192 |
def get_pipeline(num_turns, num_rows, system_prompt):
|
193 |
+
global TOKEN_INDEX
|
194 |
input_mappings = _get_output_mappings(num_turns)
|
195 |
output_mappings = input_mappings
|
196 |
+
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
197 |
+
TOKEN_INDEX += 1
|
198 |
if num_turns == 1:
|
199 |
with Pipeline(name="sft") as pipeline:
|
200 |
magpie = MagpieGenerator(
|
201 |
llm=InferenceEndpointsLLM(
|
202 |
model_id=MODEL,
|
203 |
tokenizer_id=MODEL,
|
204 |
+
api_key=api_key,
|
205 |
magpie_pre_query_template="llama3",
|
206 |
generation_kwargs={
|
207 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
|
|
222 |
llm=InferenceEndpointsLLM(
|
223 |
model_id=MODEL,
|
224 |
tokenizer_id=MODEL,
|
225 |
+
api_key=api_key,
|
226 |
generation_kwargs={"temperature": 0.8, "max_new_tokens": 1024},
|
227 |
),
|
228 |
system_prompt=system_prompt,
|
|
|
243 |
llm=InferenceEndpointsLLM(
|
244 |
model_id=MODEL,
|
245 |
tokenizer_id=MODEL,
|
246 |
+
api_key=api_key,
|
247 |
magpie_pre_query_template="llama3",
|
248 |
generation_kwargs={
|
249 |
"temperature": 0.8, # it's the best value for Llama 3.1 70B Instruct
|
|
|
266 |
|
267 |
|
268 |
def get_prompt_generation_step():
|
269 |
+
global TOKEN_INDEX
|
270 |
+
api_key = HF_TOKENS[TOKEN_INDEX % len(HF_TOKENS)]
|
271 |
+
TOKEN_INDEX += 1
|
272 |
generate_description = TextGeneration(
|
273 |
llm=InferenceEndpointsLLM(
|
274 |
+
api_key=api_key,
|
275 |
model_id=MODEL,
|
276 |
tokenizer_id=MODEL,
|
277 |
generation_kwargs={
|
src/distilabel_dataset_generator/utils.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from gradio.oauth import (
|
3 |
OAUTH_CLIENT_ID,
|
@@ -8,6 +10,9 @@ from gradio.oauth import (
|
|
8 |
)
|
9 |
from huggingface_hub import whoami
|
10 |
|
|
|
|
|
|
|
11 |
_CHECK_IF_SPACE_IS_SET = (
|
12 |
all(
|
13 |
[
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import gradio as gr
|
4 |
from gradio.oauth import (
|
5 |
OAUTH_CLIENT_ID,
|
|
|
10 |
)
|
11 |
from huggingface_hub import whoami
|
12 |
|
13 |
+
HF_TOKENS = os.getenv("HF_TOKEN") + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)]
|
14 |
+
HF_TOKENS = [token for token in HF_TOKENS if token]
|
15 |
+
|
16 |
_CHECK_IF_SPACE_IS_SET = (
|
17 |
all(
|
18 |
[
|