import json import warnings from typing import List, Optional, Union import argilla as rg import gradio as gr import numpy as np import pandas as pd from gradio.oauth import ( OAuthToken, get_space, ) from huggingface_hub import whoami from jinja2 import Environment, meta from synthetic_dataset_generator.constants import argilla_client def get_duplicate_button(): if get_space() is not None: return gr.DuplicateButton(size="lg") def list_orgs(oauth_token: Union[OAuthToken, None] = None): if oauth_token is None: return [] try: data = whoami(oauth_token.token) except Exception: swap_visibility(None) return [] try: if data["auth"]["type"] == "oauth": organizations = [data["name"]] + [org["name"] for org in data["orgs"]] elif data["auth"]["type"] == "access_token": organizations = [data["name"]] + [org["name"] for org in data["orgs"]] else: organizations = [ entry["entity"]["name"] for entry in data["auth"]["accessToken"]["fineGrained"]["scoped"] if "repo.write" in entry["permissions"] ] organizations = [org for org in organizations if org != data["name"]] organizations = [data["name"]] + organizations except Exception as e: warnings.warn(str(e)) gr.Info( "Your user token does not have the necessary permissions to push to organizations." "Please check your OAuth permissions in https://huggingface.co/settings/connected-applications." "Update your token permissions to include repo.write: https://huggingface.co/settings/tokens." ) return [] return organizations def get_org_dropdown(oauth_token: Union[OAuthToken, None] = None): if oauth_token is not None: orgs = list_orgs(oauth_token) else: orgs = [] return gr.Dropdown( label="Organization", choices=orgs, value=orgs[0] if orgs else None, allow_custom_value=True, interactive=True, ) def swap_visibility(oauth_token: Union[OAuthToken, None]): if oauth_token: return gr.update(elem_classes=["main_ui_logged_in"]) else: return gr.update(elem_classes=["main_ui_logged_out"]) def get_argilla_client() -> Union[rg.Argilla, None]: return argilla_client def get_preprocess_labels(labels: Optional[List[str]]) -> List[str]: return list(set([label.lower().strip() for label in labels])) if labels else [] def column_to_list(dataframe: pd.DataFrame, column_name: str) -> List[str]: if column_name in dataframe.columns: return dataframe[column_name].tolist() else: raise ValueError(f"Column '{column_name}' does not exist.") def process_columns( dataframe, instruction_column: str, response_columns: Union[str, List[str]], ) -> List[dict]: instruction_column = [instruction_column] if isinstance(response_columns, str): response_columns = [response_columns] data = [] for _, row in dataframe.iterrows(): instruction = "" for col in instruction_column: value = row[col] if isinstance(value, (list, np.ndarray)): user_contents = [d["content"] for d in value if d.get("role") == "user"] if user_contents: instruction = user_contents[-1] elif isinstance(value, str): try: parsed_message = json.loads(value) user_contents = [ d["content"] for d in parsed_message if d.get("role") == "user" ] if user_contents: instruction = user_contents[-1] except json.JSONDecodeError: instruction = value else: instruction = "" generations = [] for col in response_columns: value = row[col] if isinstance(value, (list, np.ndarray)): if all(isinstance(item, dict) and "role" in item for item in value): assistant_contents = [ d["content"] for d in value if d.get("role") == "assistant" ] if assistant_contents: generations.append(assistant_contents[-1]) else: generations.extend(value) elif isinstance(value, str): try: parsed_message = json.loads(value) assistant_contents = [ d["content"] for d in parsed_message if d.get("role") == "assistant" ] if assistant_contents: generations.append(assistant_contents[-1]) except json.JSONDecodeError: generations.append(value) else: pass data.append({"instruction": instruction, "generations": generations}) return data def extract_column_names(prompt_template: str) -> List[str]: env = Environment() parsed_content = env.parse(prompt_template) variables = meta.find_undeclared_variables(parsed_content) return list(variables) def pad_or_truncate_list(lst, target_length): lst = lst or [] lst_length = len(lst) if lst_length >= target_length: return lst[-target_length:] else: return lst + [None] * (target_length - lst_length)