import gradio as gr from src.distilabel_dataset_generator._tabbedinterface import TabbedInterface from src.distilabel_dataset_generator.apps.faq import app as faq_app from src.distilabel_dataset_generator.apps.sft import app as sft_app from src.distilabel_dataset_generator.apps.textcat import app as textcat_app theme = gr.themes.Monochrome( spacing_size="md", font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], ) css = """ .main_ui_logged_out{opacity: 0.3; pointer-events: none} .tabitem{border: 0px} .group_padding{padding: .55em} #space_model .wrap > label:last-child{opacity: 0.3; pointer-events:none} #system_prompt_examples { color: black; } @media (prefers-color-scheme: dark) { #system_prompt_examples { color: white; background-color: black; } } button[role="tab"].selected, button[role="tab"][aria-selected="true"], button[role="tab"][data-tab-id][aria-selected="true"] { background-color: #000000; color: white; border: none; font-size: 16px; font-weight: bold; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); transition: background-color 0.3s ease, color 0.3s ease; } .gallery { color: black !important; } .flex-shrink-0.truncate.px-1 { color: black !important; } """ demo = TabbedInterface( [textcat_app, sft_app, faq_app], ["Text Classification", "Supervised Fine-Tuning", "FAQ"], css=css, title="""

Synthetic Data Generator

Build datasets using natural language

""", head="Synthetic Data Generator", theme=theme, ) if __name__ == "__main__": demo.launch()