import gradio as gr from src.distilabel_dataset_generator._tabbedinterface import TabbedInterface from src.distilabel_dataset_generator.apps.faq import app as faq_app from src.distilabel_dataset_generator.apps.sft import app as sft_app from src.distilabel_dataset_generator.apps.textcat import app as textcat_app theme ='argilla/argilla-theme' css = """ button[role="tab"][aria-selected="true"] { border: 0; background: var(--neutral-800); color: white; border-top-right-radius: var(--radius-md); border-top-left-radius: var(--radius-md)} button[role="tab"][aria-selected="true"]:hover {border-color: var(--button-primary-background-fill)} button.hf-login {background: var(--neutral-800); color: white} button.hf-login:hover {background: var(--neutral-700); color: white} .tabitem { border: 0; padding-inline: 0} .main_ui_logged_out{opacity: 0.3; pointer-events: none} .group_padding{padding: .55em} .gallery-item {background: var(--background-fill-secondary); text-align: left} .gallery {white-space: wrap} #space_model .wrap > label:last-child{opacity: 0.3; pointer-events:none} #system_prompt_examples { color: var(--body-text-color) !important; background-color: var(--block-background-fill) !important; } """ demo = TabbedInterface( [textcat_app, sft_app, faq_app], ["Text Classification", "Supervised Fine-Tuning", "FAQ"], css=css, title="""

Synthetic Data Generator

Build datasets using natural language

""", head="Synthetic Data Generator", theme=theme, ) if __name__ == "__main__": demo.launch()