import json import os from typing import List, Optional, Union import argilla as rg import gradio as gr import numpy as np import pandas as pd from gradio.oauth import ( OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET, OAUTH_SCOPES, OPENID_PROVIDER_URL, get_space, ) from huggingface_hub import whoami from jinja2 import Environment, meta _LOGGED_OUT_CSS = ".main_ui_logged_out{opacity: 0.3; pointer-events: none}" HF_TOKENS = [os.getenv("HF_TOKEN")] + [os.getenv(f"HF_TOKEN_{i}") for i in range(1, 10)] HF_TOKENS = [token for token in HF_TOKENS if token] _CHECK_IF_SPACE_IS_SET = ( all( [ OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET, OAUTH_SCOPES, OPENID_PROVIDER_URL, ] ) or get_space() is None ) if _CHECK_IF_SPACE_IS_SET: from gradio.oauth import OAuthToken else: OAuthToken = str def get_login_button(): return gr.LoginButton(value="Sign in!", size="sm", scale=2).activate() def get_duplicate_button(): if get_space() is not None: return gr.DuplicateButton(size="lg") def list_orgs(oauth_token: OAuthToken = None): try: if oauth_token is None: return [] data = whoami(oauth_token.token) if data["auth"]["type"] == "oauth": organizations = [data["name"]] + [org["name"] for org in data["orgs"]] elif data["auth"]["type"] == "access_token": organizations = [org["name"] for org in data["orgs"]] else: organizations = [ entry["entity"]["name"] for entry in data["auth"]["accessToken"]["fineGrained"]["scoped"] if "repo.write" in entry["permissions"] ] organizations = [org for org in organizations if org != data["name"]] organizations = [data["name"]] + organizations except Exception as e: raise gr.Error( f"Failed to get organizations: {e}. See if you are logged and connected: https://huggingface.co/settings/connected-applications." ) return organizations def get_org_dropdown(oauth_token: OAuthToken = None): if oauth_token is not None: orgs = list_orgs(oauth_token) else: orgs = [] return gr.Dropdown( label="Organization", choices=orgs, value=orgs[0] if orgs else None, allow_custom_value=True, interactive=True, ) def get_token(oauth_token: OAuthToken = None): if oauth_token: return oauth_token.token else: return "" def swap_visibility(oauth_token: Optional[OAuthToken] = None): if oauth_token: return gr.update(elem_classes=["main_ui_logged_in"]) else: return gr.update(elem_classes=["main_ui_logged_out"]) def get_base_app(): with gr.Blocks( title="🧬 Synthetic Data Generator", head="🧬 Synthetic Data Generator", css=_LOGGED_OUT_CSS, ) as app: with gr.Row(): gr.Markdown( "Want to run this locally or with other LLMs? Take a look at the FAQ tab. distilabel Synthetic Data Generator is free, we use the authentication token to push the dataset to the Hugging Face Hub and not for data generation." ) with gr.Row(): gr.Column() get_login_button() gr.Column() gr.Markdown("## Iterate on a sample dataset") with gr.Column() as main_ui: pass return app def get_argilla_client() -> Union[rg.Argilla, None]: try: api_url = os.getenv("ARGILLA_API_URL_SDG_REVIEWER") api_key = os.getenv("ARGILLA_API_KEY_SDG_REVIEWER") if api_url is None or api_key is None: api_url = os.getenv("ARGILLA_API_URL") api_key = os.getenv("ARGILLA_API_KEY") return rg.Argilla( api_url=api_url, api_key=api_key, ) except Exception: return None def get_preprocess_labels(labels: Optional[List[str]]) -> List[str]: return list(set([label.lower().strip() for label in labels])) if labels else [] def column_to_list(dataframe: pd.DataFrame, column_name: str) -> List[str]: if column_name in dataframe.columns: return dataframe[column_name].tolist() else: raise ValueError(f"Column '{column_name}' does not exist.") def process_columns( dataframe, instruction_column: str, response_columns: Union[str, List[str]], ) -> List[dict]: instruction_column = [instruction_column] if isinstance(response_columns, str): response_columns = [response_columns] data = [] for _, row in dataframe.iterrows(): instruction = "" for col in instruction_column: value = row[col] if isinstance(value, (list, np.ndarray)): user_contents = [d["content"] for d in value if d.get("role") == "user"] if user_contents: instruction = user_contents[-1] elif isinstance(value, str): try: parsed_message = json.loads(value) user_contents = [ d["content"] for d in parsed_message if d.get("role") == "user" ] if user_contents: instruction = user_contents[-1] except json.JSONDecodeError: instruction = value else: instruction = "" generations = [] for col in response_columns: value = row[col] if isinstance(value, (list, np.ndarray)): if all(isinstance(item, dict) and "role" in item for item in value): assistant_contents = [ d["content"] for d in value if d.get("role") == "assistant" ] if assistant_contents: generations.append(assistant_contents[-1]) else: generations.extend(value) elif isinstance(value, str): try: parsed_message = json.loads(value) assistant_contents = [ d["content"] for d in parsed_message if d.get("role") == "assistant" ] if assistant_contents: generations.append(assistant_contents[-1]) except json.JSONDecodeError: generations.append(value) else: pass data.append({"instruction": instruction, "generations": generations}) return data def extract_column_names(prompt_template: str) -> List[str]: env = Environment() parsed_content = env.parse(prompt_template) variables = meta.find_undeclared_variables(parsed_content) return list(variables) def pad_or_truncate_list(lst, target_length): lst = lst or [] lst_length = len(lst) if lst_length >= target_length: return lst[-target_length:] else: return lst + [None] * (target_length - lst_length)