phi4-multimodal / app.py
ariG23498's picture
ariG23498 HF staff
fix
39d7a6f
raw
history blame
4.71 kB
import gradio as gr
from PIL import Image
import torch
import soundfile as sf
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
import spaces
# Define model path
model_path = "microsoft/Phi-4-multimodal-instruct"
# Load model and processor
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype="auto",
trust_remote_code=True,
_attn_implementation="eager",
)
# Define prompt structure
user_prompt = '<|user|>'
assistant_prompt = '<|assistant|>'
prompt_suffix = '<|end|>'
# Define inference functions for each input type
@spaces.GPU
def process_image(image, question):
if not image or not question:
return "Please upload an image and provide a question."
prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
inputs = processor(text=prompt, images=image, return_tensors='pt').to(model.device)
with torch.no_grad():
generate_ids = model.generate(
**inputs,
max_new_tokens=200,
num_logits_to_keep=0,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return response
@spaces.GPU
def process_audio(audio, question):
if not audio or not question:
return "Please upload an audio file and provide a question."
prompt = f'{user_prompt}<|audio_1|>{question}{prompt_suffix}{assistant_prompt}'
samplerate, audio_data = audio # Gradio Audio returns (samplerate, data)
inputs = processor(text=prompt, audios=[(audio_data, samplerate)], return_tensors='pt').to(model.device)
with torch.no_grad():
generate_ids = model.generate(
**inputs,
max_new_tokens=200,
num_logits_to_keep=0,
)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(
generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
return response
# Gradio interface
with gr.Blocks(
title="Phi-4 Multimodal Demo",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="gray",
radius_size="lg",
),
) as demo:
gr.Markdown(
"""
# Phi-4 Multimodal Demo
Select a tab below to upload an **image** or **audio** file, ask a question, and get a response from the model!
Built with the `microsoft/Phi-4-multimodal-instruct` model by xAI.
"""
)
with gr.Tabs():
# Image Tab
with gr.TabItem("Image"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(label="Upload Your Image", type="pil")
image_question = gr.Textbox(
label="Your Question",
placeholder="e.g., 'What is shown in this image?'",
lines=2,
)
image_submit = gr.Button("Submit", variant="primary")
with gr.Column(scale=2):
image_output = gr.Textbox(
label="Model Response",
placeholder="Response will appear here...",
lines=10,
interactive=False,
)
image_submit.click(
fn=process_image,
inputs=[image_input, image_question],
outputs=image_output,
)
# Audio Tab
with gr.TabItem("Audio"):
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(label="Upload Your Audio", type="numpy")
audio_question = gr.Textbox(
label="Your Question",
placeholder="e.g., 'Transcribe this audio.'",
lines=2,
)
audio_submit = gr.Button("Submit", variant="primary")
with gr.Column(scale=2):
audio_output = gr.Textbox(
label="Model Response",
placeholder="Response will appear here...",
lines=10,
interactive=False,
)
audio_submit.click(
fn=process_audio,
inputs=[audio_input, audio_question],
outputs=audio_output,
)
# Launch the demo
demo.launch()