Spaces:
Build error
Build error
File size: 15,662 Bytes
db6bff5 bcd422d db6bff5 07fbc67 6c03001 c3cb991 bcd422d 07fbc67 8d2f9d4 07fbc67 8d2f9d4 07fbc67 fef76d0 f6aeffc bcd422d 0ccc62e bcd422d db6bff5 8d2f9d4 fef76d0 07fbc67 bcd422d c3cb991 bcd422d db6bff5 8d2f9d4 db6bff5 8d2f9d4 db6bff5 bcd422d 8d2f9d4 bcd422d db6bff5 bcd422d db6bff5 bcd422d db6bff5 f169c98 c3cb991 8d2f9d4 be9a762 8d2f9d4 07fbc67 f169c98 07fbc67 f169c98 be9a762 f169c98 8d2f9d4 f169c98 07fbc67 f169c98 be9a762 f169c98 07fbc67 f169c98 07fbc67 f6aeffc 07fbc67 f169c98 07fbc67 be9a762 f169c98 07fbc67 f169c98 07fbc67 f169c98 07fbc67 f169c98 07fbc67 8d2f9d4 07fbc67 f169c98 07fbc67 8d2f9d4 f169c98 07fbc67 be9a762 07fbc67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import os
import httpx
from dotenv import load_dotenv
from typing import Dict, Any, Optional, List
from datetime import datetime
import logging
import asyncio
from openai import AsyncOpenAI
import json
import google.generativeai as genai
import PIL.Image
from typing import List, Dict, Any, Optional
from app.utils.load_env import ACCESS_TOKEN, WHATSAPP_API_URL, GEMINI_API, OPENAI_API
from app.utils.system_prompt import system_prompt
from app.services.search_engine import google_search
# Load environment variables
load_dotenv()
# Define function specifications for Gemini
function_declarations = [
{
"name": "google_search",
"description": "Perform a Google search and retrieve search results",
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query to perform"
},
"num_results": {
"type": "string",
"description": "Number of search results to retrieve (1-10)",
"default": "3"
}
},
"required": ["query"]
}
}
]
genai.configure(api_key=GEMINI_API)
client = AsyncOpenAI(api_key = OPENAI_API)
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Validate environment variables
if not WHATSAPP_API_URL or not ACCESS_TOKEN:
logger.warning("Environment variables for WHATSAPP_API_URL or ACCESS_TOKEN are not set!")
# Helper function to send a reply
async def send_reply(to: str, body: str, whatsapp_token: str, whatsapp_url:str) -> Dict[str, Any]:
headers = {
"Authorization": f"Bearer {whatsapp_token}",
"Content-Type": "application/json"
}
data = {
"messaging_product": "whatsapp",
"to": to,
"type": "text",
"text": {
"body": body
}
}
async with httpx.AsyncClient() as client:
response = await client.post(whatsapp_url, json=data, headers=headers)
if response.status_code != 200:
error_detail = response.json()
logger.error(f"Failed to send reply: {error_detail}")
raise Exception(f"Failed to send reply with status code {response.status_code}: {error_detail}")
return response.json()
# Helper function to generate a reply based on message content
async def generate_reply(sender: str, content: str, timestamp: int) -> str:
try:
received_time = datetime.fromtimestamp(int(timestamp) / 1000) # Assuming timestamp is in milliseconds
if "hello" in content.lower():
return f"Hi {sender}, how can I assist you today?"
elif "test" in content.lower():
return f"Hi {sender}, this is a reply to your test message."
elif received_time.hour < 12:
return f"Good morning, {sender}! How can I help you?"
else:
return f"Hello {sender}, I hope you're having a great day!"
except Exception as e:
logger.error(f"Error generating reply: {str(e)}", exc_info=True)
return f"Sorry {sender}, I couldn't process your message. Please try again."
async def process_message_with_llm(
sender_id: str,
content: str,
history: List[Dict[str, str]],
rag_system: Any,
whatsapp_token: str,
whatsapp_url:str,
image_file_path: Optional[str] = None,
doc_path: Optional[str] = None,
video_file_path: Optional[str] = None,
) -> str:
"""Process message with retry logic."""
try:
logger.info(f"Processing message for sender: {sender_id}")
generated_reply = await generate_response_from_gemini(
sender=sender_id,
content=content,
history=history,
rag_system=rag_system,
image_file_path=image_file_path,
doc_path=doc_path,
video_file_path=video_file_path
)
logger.info(f"Generated reply: {generated_reply}")
response = await send_reply(sender_id, generated_reply, whatsapp_token, whatsapp_url)
# return generated_reply
return generated_reply
except Exception as e:
logger.error(f"Error in process_message_with_retry: {str(e)}", exc_info=True)
return "Sorry, I couldn't generate a response at this time."
async def generate_response_from_gemini(
sender: str,
content: str,
history: List[Dict[str, str]],
rag_system: Any = None,
image_file_path: Optional[str] = None,
doc_path: Optional[str] = None,
video_file_path: Optional[str] = None,
) -> str:
try:
logger.info(f"Generating response for sender: {sender}")
# Initialize the model
model = genai.GenerativeModel("gemini-1.5-pro-002", system_instruction= system_prompt)
# Start chat with history
chat = model.start_chat(history=history)
if rag_system:
keywords = await rag_system.extract_keywords_async(content)
# Implement RAG: Retrieve relevant documents
retrieved_docs = await rag_system.adv_query(content, keywords=keywords, top_k=1)
if retrieved_docs:
logger.info(f"Retrieved {len(retrieved_docs)} documents for context.")
# Format the retrieved documents as a context string
context = "\n\n".join([f"Content: {doc['text']}" for doc in retrieved_docs])
# Option 1: Append to history as a system message
history.append({"role": "system", "content": f"Relevant documents:\n{context}"})
# Reinitialize chat with updated history
chat = model.start_chat(history=history)
# Process image
if image_file_path:
logger.info(f"Processing image at {image_file_path}")
image_data = PIL.Image.open(image_file_path)
response = await chat.send_message_async(image_data)
return response.text
# Process document
if doc_path:
logger.info(f"Processing document at {doc_path}")
doc_data = genai.upload_file(doc_path)
response = await chat.send_message_async(doc_data)
return response.text
# Process video (if supported)
if video_file_path:
logger.info(f"Processing video at {video_file_path}")
video_data = genai.upload_file(video_file_path)
response = await chat.send_message_async(video_data)
return response.text
# Implement video processing logic here
pass # Placeholder for video processing logic
# Send the user's message
response = await chat.send_message_async(content)
# response = await handle_function_call(response)
return response.text
except Exception as e:
logger.error("Error in generate_response_from_gemini:", exc_info=True)
return "Sorry, I couldn't generate a response at this time."
async def handle_function_call(chat):
"""
Handle function calls from the Gemini API.
Args:
chat (ChatSession): The current chat session.
Returns:
The response after resolving function calls.
"""
# Continue the conversation and handle any function calls
while True:
response = chat.send_message_async(chat.history[-1])
# Check if there are any function calls to handle
if response.candidates[0].content.parts[0].function_call:
function_call = response.candidates[0].content.parts[0].function_call
function_name = function_call.name
function_args = json.loads(function_call.args)
# Dispatch to the appropriate function
if function_name == "google_search":
# Handle async function call
result = await google_search(
query=function_args['query'],
num_results=function_args.get('num_results', '3')
)
# Send the function result back to continue the conversation
response = chat.send_message_async(
part={
"function_response": {
"name": function_name,
"response": result
}
}
)
else:
# No more function calls, return the final response
return response
# Process message with retry logic
# async def process_message_with_retry(
# sender_id: str,
# content: str,
# history: List[str],
# timestamp: Optional[int] = None,
# media: Optional[Dict[str, Any]] = None,
# image_file_path: Optional[str] = None,
# doc_path: Optional[str] = None,
# ) -> Dict[str, Any]:
# """Process message with retry logic"""
# retries = 1
# delay = 0.1 # Initial delay in seconds
# # for attempt in range(retries):
# try:
# logger.info(f"Sending message to the Gemini model...")
# generated_reply = await generate_response_from_gemini(sender = sender_id, content=content, history = history, timestamp = timestamp, image_file_path = image_file_path, media=media, doc_path = doc_path)
# logger.info(f"Reply generated: {generated_reply}")
# response = await send_reply(sender_id, generated_reply)
# return generated_reply
# return {"status": "success", "reply": generated_reply, "response": response}
# except Exception as e:
# logger.error(f"Error generating reply: {str(e)}", exc_info=True)
# return {"status": "error", "reply": "Sorry, I couldn't generate a response at this time."}
# logger.error(f"Attempt {attempt + 1} failed: {str(e)}", exc_info=True)
# if attempt < retries - 1:
# await asyncio.sleep(delay)
# delay *= 2 # Exponential backoff
# else:
# raise Exception(f"All {retries} attempts failed.") from e
# Example usage
# asyncio.run(process_message_with_retry("1234567890", "hello", 1700424056000))
# async def generate_response_from_gemini(sender: str, content: str, timestamp: str, history: List[Dict[str, str]], media: Optional[Dict[str, Any]] = None, image_file_path: Optional[str] = None, doc_path: Optional[str] = None) -> str:
# try:
# print(f"Sender: {sender}")
# print(f"Content: {content}")
# print(f"Timestamp: {timestamp}")
# print(f"History: {history}")
# print(f"Media: {media}")
# # Initialize the model
# model = genai.GenerativeModel("gemini-1.5-pro-002")
# # Define the chat history
# chat = model.start_chat(
# history=history
# )
# logger.info(f"file_path: {image_file_path}")
# if image_file_path: # Should be bytes or a file-like object
# prompt = "Describe the following image:"
# image_data = PIL.Image.open(image_file_path)
# print("Sending image to the Gemini model...")
# response = await chat.send_message_async(image_data)
# print(f"Model response: {response.text}")
# return response.text
# if doc_path:
# doc_data = genai.upload_file(doc_path)
# print("Sending document to the Gemini model...")
# response = await chat.send_message_async(doc_data)
# print(f"Model response: {response.text}")
# return response.text
# # Send the user's message
# print("Sending message to the Gemini model...")
# response = await chat.send_message_async(content)
# print(f"Model response: {response.text}")
# return response.text
# except Exception as e:
# print("Error generating reply from Gemini:", e)
# return "Sorry, I couldn't generate a response at this time."
async def generate_response_from_chatgpt(sender: str, content: str, timestamp: str, history: str) -> str:
"""
Generate a reply using OpenAI's ChatGPT API.
"""
try:
# # Initialize chat history if not provided
# chat_history = chat_history or []
# # Append the current user message to the chat history
# chat_history.append({"role": "user", "content": f"From {sender} at {timestamp}: {content}"})
messages = [
{"role": "system", "content": "You're an investor, a serial founder, and you've sold many startups. You understand nothing but business."},
{"role": "system", "content": f"Message History: {history}"},
{"role": "user", "content": f"From {sender} at {timestamp}: {content}"}
]
print(f"Messages: {messages}")
response = await client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=200,
temperature=0.5
)
chatgpt_response = response.choices[0].message.content.strip()
# Append the assistant's response to the chat history
# chat_history.append({"role": "assistant", "content": chatgpt_response})
return chatgpt_response
except Exception as e:
print("Error generating reply:", e)
return "Sorry, I couldn't generate a response at this time."
# async def generate_response_from_chatgpt(
# sender: str,
# content: str,
# timestamp: str,
# image: Optional[bytes] = None,
# file: Optional[bytes] = None,
# file_name: Optional[str] = None,
# chat_history: Optional[List[Dict[str, str]]] = None,
# ) -> Dict[str, Any]:
# """
# Generate a reply using OpenAI's GPT-4 API, including support for images, files, and maintaining chat history.
# """
# try:
# # Initialize chat history if not provided
# chat_history = chat_history or []
# # Append the current user message to the chat history
# chat_history.append({"role": "user", "content": f"From {sender} at {timestamp}: {content}"})
# # Prepare files for the request
# files = []
# if image:
# files.append({"name": "image.png", "type": "image/png", "content": image})
# if file:
# files.append({"name": file_name or "file.txt", "type": "application/octet-stream", "content": file})
# logger.debug(f"Chat History Before Response: {chat_history}")
# # Send the request to the GPT-4 API
# response = await client.chat.completions.create(
# model="gpt-4-vision", # Ensure this is the correct model for multimodal support
# messages=chat_history,
# files=files if files else None, # Include files if present
# max_tokens=200,
# temperature=0.5,
# )
# # Parse the assistant's response
# chatgpt_response = response.choices[0].message.content.strip()
# # Append the assistant's response to the chat history
# chat_history.append({"role": "assistant", "content": chatgpt_response})
# logger.debug(f"Chat History After Response: {chat_history}")
# # Return both the assistant's response and the updated chat history
# return {"response": chatgpt_response, "chat_history": chat_history}
# except Exception as e:
# logger.error("Error generating reply", exc_info=True)
# return {"response": "Sorry, I couldn't generate a response at this time.", "chat_history": chat_history}
|