File size: 5,661 Bytes
8d2f9d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# bm25_search.py
import asyncio
from rank_bm25 import BM25Okapi
import nltk
import string
from typing import List, Set, Optional
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer


def download_nltk_resources():
    """
    Downloads required NLTK resources synchronously.
    """
    resources = ['punkt', 'stopwords', 'wordnet', 'omw-1.4']
    for resource in resources:
        try:
            nltk.download(resource, quiet=True)
        except Exception as e:
            print(f"Error downloading {resource}: {str(e)}")

class BM25_search:
    # Class variable to track if resources have been downloaded
    nltk_resources_downloaded = False

    def __init__(self, remove_stopwords: bool = True, perform_lemmatization: bool = False):
        """
        Initializes the BM25search.

        Parameters:
        - remove_stopwords (bool): Whether to remove stopwords during preprocessing.
        - perform_lemmatization (bool): Whether to perform lemmatization on tokens.
        """
        # Ensure NLTK resources are downloaded only once
        if not BM25_search.nltk_resources_downloaded:
            download_nltk_resources()
            BM25_search.nltk_resources_downloaded = True  # Mark as downloaded

        self.documents: List[str] = []
        self.doc_ids: List[str] = []
        self.tokenized_docs: List[List[str]] = []
        self.bm25: Optional[BM25Okapi] = None
        self.remove_stopwords = remove_stopwords
        self.perform_lemmatization = perform_lemmatization
        self.stop_words: Set[str] = set(stopwords.words('english')) if remove_stopwords else set()
        self.lemmatizer = WordNetLemmatizer() if perform_lemmatization else None

    def preprocess(self, text: str) -> List[str]:
        """
        Preprocesses the input text by lowercasing, removing punctuation,
        tokenizing, removing stopwords, and optionally lemmatizing.
        """
        text = text.lower().translate(str.maketrans('', '', string.punctuation))
        tokens = nltk.word_tokenize(text)
        if self.remove_stopwords:
            tokens = [token for token in tokens if token not in self.stop_words]
        if self.perform_lemmatization and self.lemmatizer:
            tokens = [self.lemmatizer.lemmatize(token) for token in tokens]
        return tokens

    def add_document(self, doc_id: str, new_doc: str) -> None:
        """
        Adds a new document to the corpus and updates the BM25 index.
        """
        processed_tokens = self.preprocess(new_doc)
        
        self.documents.append(new_doc)
        self.doc_ids.append(doc_id)
        self.tokenized_docs.append(processed_tokens)
        # Ensure update_bm25 is awaited if required in async context
        self.update_bm25()
        print(f"Added document ID: {doc_id}")

    async def remove_document(self, index: int) -> None:
        """
        Removes a document from the corpus based on its index and updates the BM25 index.
        """
        if 0 <= index < len(self.documents):
            removed_doc_id = self.doc_ids[index]
            del self.documents[index]
            del self.doc_ids[index]
            del self.tokenized_docs[index]
            self.update_bm25()
            print(f"Removed document ID: {removed_doc_id}")
        else:
            print(f"Index {index} is out of bounds.")

    def update_bm25(self) -> None:
        """
        Updates the BM25 index based on the current tokenized documents.
        """
        if self.tokenized_docs:
            self.bm25 = BM25Okapi(self.tokenized_docs)
            print("BM25 index has been initialized.")
        else:
            print("No documents to initialize BM25.")


    def get_scores(self, query: str) -> List[float]:
        """
        Computes BM25 scores for all documents based on the given query.
        """
        processed_query = self.preprocess(query)
        print(f"Tokenized Query: {processed_query}")
        
        if self.bm25:
            return self.bm25.get_scores(processed_query)
        else:
            print("BM25 is not initialized.")
            return []

    def get_top_n_docs(self, query: str, n: int = 5) -> List[str]:
        """
        Returns the top N documents for a given query.
        """
        processed_query = self.preprocess(query)
        if self.bm25:
            return self.bm25.get_top_n(processed_query, self.documents, n)
        else:
            print("initialized.")
            return []
    
    def clear_documents(self) -> None:
        """
        Clears all documents from the BM25 index.
        """
        self.documents = []
        self.doc_ids = []
        self.tokenized_docs = []
        self.bm25 = None  # Reset BM25 index
        print("BM25 documents cleared and index reset.")
    
    def get_document(self, doc_id: str) -> str:
        """
        Retrieves a document by its document ID.
        
        Parameters:
        - doc_id (str): The ID of the document to retrieve.

        Returns:
        - str: The document text if found, otherwise an empty string.
        """
        try:
            index = self.doc_ids.index(doc_id)
            return self.documents[index]
        except ValueError:
            print(f"Document ID {doc_id} not found.")
            return ""


async def initialize_bm25_search(remove_stopwords: bool = True, perform_lemmatization: bool = False) -> BM25_search:
    """
    Initializes the BM25search with proper NLTK resource downloading.
    """
    loop = asyncio.get_running_loop()
    await loop.run_in_executor(None, download_nltk_resources)
    return BM25_search(remove_stopwords, perform_lemmatization)