Spaces:
Build error
Build error
File size: 5,446 Bytes
8d2f9d4 99723c5 8d2f9d4 99723c5 4c47563 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 99723c5 8d2f9d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import asyncio
from rank_bm25 import BM25Okapi
# import nltk
import string
from typing import List, Set, Optional
# from nltk.corpus import stopwords
# from nltk.stem import WordNetLemmatizer
import os
# Commented out this function that downloads NLTK resources.
# def download_nltk_resources():
# """
# Downloads required NLTK resources synchronously.
# """
# resources = ['punkt', 'stopwords', 'wordnet', 'omw-1.4']
# nltk_data_path = "/tmp/nltk_data"
# os.makedirs(nltk_data_path, exist_ok=True)
# nltk.data.path.append(nltk_data_path)
# for resource in resources:
# try:
# nltk.download(resource, download_dir=nltk_data_path, quiet=True)
# except Exception as e:
# print(f"Error downloading {resource}: {str(e)}")
class BM25_search:
nltk_resources_downloaded = False
def __init__(self, remove_stopwords: bool = True, perform_lemmatization: bool = False):
"""
Initializes the BM25search.
"""
# Commented out NLTK resource initialization
# if not BM25_search.nltk_resources_downloaded:
# download_nltk_resources()
# BM25_search.nltk_resources_downloaded = True
self.documents: List[str] = []
self.doc_ids: List[str] = []
self.tokenized_docs: List[List[str]] = []
self.bm25: Optional[BM25Okapi] = None
self.remove_stopwords = remove_stopwords
self.perform_lemmatization = perform_lemmatization
# Commented out NLTK-specific tools
# self.stop_words: Set[str] = set(stopwords.words('english')) if remove_stopwords else set()
# self.lemmatizer = WordNetLemmatizer() if perform_lemmatization else None
def preprocess(self, text: str) -> List[str]:
"""
Preprocesses the input text by lowercasing and removing punctuation.
NLTK-related tokenization, stopword removal, and lemmatization are commented out.
"""
text = text.lower().translate(str.maketrans('', '', string.punctuation))
# tokens = nltk.word_tokenize(text) # Commented out NLTK tokenization
tokens = text.split() # Basic tokenization as a fallback
# if self.remove_stopwords:
# tokens = [token for token in tokens if token not in self.stop_words]
# if self.perform_lemmatization and self.lemmatizer:
# tokens = [self.lemmatizer.lemmatize(token) for token in tokens]
return tokens
def add_document(self, doc_id: str, new_doc: str) -> None:
"""
Adds a new document to the corpus and updates the BM25 index.
"""
processed_tokens = self.preprocess(new_doc)
self.documents.append(new_doc)
self.doc_ids.append(doc_id)
self.tokenized_docs.append(processed_tokens)
self.update_bm25()
print(f"Added document ID: {doc_id}")
async def remove_document(self, index: int) -> None:
"""
Removes a document from the corpus based on its index and updates the BM25 index.
"""
if 0 <= index < len(self.documents):
removed_doc_id = self.doc_ids[index]
del self.documents[index]
del self.doc_ids[index]
del self.tokenized_docs[index]
self.update_bm25()
print(f"Removed document ID: {removed_doc_id}")
else:
print(f"Index {index} is out of bounds.")
def update_bm25(self) -> None:
"""
Updates the BM25 index based on the current tokenized documents.
"""
if self.tokenized_docs:
self.bm25 = BM25Okapi(self.tokenized_docs)
print("BM25 index has been initialized.")
else:
print("No documents to initialize BM25.")
def get_scores(self, query: str) -> List[float]:
"""
Computes BM25 scores for all documents based on the given query.
"""
processed_query = self.preprocess(query)
print(f"Tokenized Query: {processed_query}")
if self.bm25:
return self.bm25.get_scores(processed_query)
else:
print("BM25 is not initialized.")
return []
def get_top_n_docs(self, query: str, n: int = 5) -> List[str]:
"""
Returns the top N documents for a given query.
"""
processed_query = self.preprocess(query)
if self.bm25:
return self.bm25.get_top_n(processed_query, self.documents, n)
else:
print("BM25 is not initialized.")
return []
def clear_documents(self) -> None:
"""
Clears all documents from the BM25 index.
"""
self.documents = []
self.doc_ids = []
self.tokenized_docs = []
self.bm25 = None
print("BM25 documents cleared and index reset.")
def get_document(self, doc_id: str) -> str:
"""
Retrieves a document by its document ID.
"""
try:
index = self.doc_ids.index(doc_id)
return self.documents[index]
except ValueError:
print(f"Document ID {doc_id} not found.")
return ""
async def initialize_bm25_search(remove_stopwords: bool = True, perform_lemmatization: bool = False) -> BM25_search:
"""
Initializes the BM25search.
"""
# Removed NLTK resource download from async context
return BM25_search(remove_stopwords, perform_lemmatization)
|