|
import inspect |
|
import os |
|
import traceback |
|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
from matplotlib import pyplot as plt |
|
|
|
from evaluate_params import eval_func_param_names, eval_extra_columns |
|
from gen import get_context, get_score_model, get_model, evaluate, check_locals |
|
from prompter import Prompter |
|
from utils import clear_torch_cache, NullContext, get_kwargs |
|
|
|
|
|
def run_eval( |
|
base_model=None, lora_weights=None, inference_server=None, |
|
prompt_type=None, prompt_dict=None, |
|
debug=None, chat=False, chat_context=None, stream_output=None, |
|
eval_filename=None, eval_prompts_only_num=None, eval_prompts_only_seed=None, eval_as_output=None, |
|
examples=None, memory_restriction_level=None, |
|
|
|
score_model=None, load_8bit=None, load_4bit=None, load_half=None, load_gptq=None, use_safetensors=None, |
|
use_gpu_id=None, tokenizer_base_model=None, |
|
gpu_id=None, local_files_only=None, resume_download=None, use_auth_token=None, |
|
trust_remote_code=None, offload_folder=None, compile_model=None, |
|
|
|
temperature=None, |
|
top_p=None, |
|
top_k=None, |
|
num_beams=None, |
|
max_new_tokens=None, |
|
min_new_tokens=None, |
|
early_stopping=None, |
|
max_time=None, |
|
repetition_penalty=None, |
|
num_return_sequences=None, |
|
do_sample=None, |
|
langchain_mode=None, |
|
langchain_action=None, |
|
langchain_agents=[], |
|
top_k_docs=None, |
|
chunk=None, |
|
chunk_size=None, |
|
document_subset=None, |
|
document_choice=None, |
|
|
|
src_lang=None, tgt_lang=None, concurrency_count=None, save_dir=None, sanitize_bot_response=None, |
|
model_state0=None, |
|
max_max_new_tokens=None, |
|
is_public=None, |
|
max_max_time=None, |
|
raise_generate_gpu_exceptions=None, load_db_if_exists=None, use_llm_if_no_docs=None, |
|
dbs=None, user_path=None, |
|
detect_user_path_changes_every_query=None, |
|
use_openai_embedding=None, use_openai_model=None, hf_embedding_model=None, |
|
db_type=None, n_jobs=None, first_para=None, text_limit=None, verbose=None, cli=None, reverse_docs=None, |
|
use_cache=None, |
|
auto_reduce_chunks=None, max_chunks=None, |
|
model_lock=None, force_langchain_evaluate=None, |
|
model_state_none=None, |
|
): |
|
check_locals(**locals()) |
|
|
|
if eval_prompts_only_num > 0: |
|
np.random.seed(eval_prompts_only_seed) |
|
example1 = examples[-1] |
|
examples = [] |
|
responses = [] |
|
if eval_filename is None: |
|
|
|
eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json' |
|
if not os.path.isfile(eval_filename): |
|
os.system( |
|
'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename) |
|
import json |
|
data = json.load(open(eval_filename, 'rt')) |
|
|
|
turn_start = 0 |
|
data = [x for x in data if len(x['conversations']) > turn_start + 1 and |
|
x['conversations'][turn_start]['from'] == 'human' and |
|
x['conversations'][turn_start + 1]['from'] == 'gpt'] |
|
for i in sorted(np.random.randint(0, len(data), size=eval_prompts_only_num)): |
|
assert data[i]['conversations'][turn_start]['from'] == 'human' |
|
instruction = data[i]['conversations'][turn_start]['value'] |
|
assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt' |
|
output = data[i]['conversations'][turn_start + 1]['value'] |
|
examplenew = example1.copy() |
|
assert not chat, "No gradio must use chat=False, uses nochat instruct" |
|
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction |
|
examplenew[eval_func_param_names.index('iinput_nochat')] = '' |
|
examplenew[eval_func_param_names.index('context')] = get_context(chat_context, prompt_type) |
|
examples.append(examplenew) |
|
responses.append(output) |
|
else: |
|
|
|
|
|
import json |
|
data = json.load(open(eval_filename, 'rt')) |
|
for i in sorted(np.random.randint(0, len(data), size=eval_prompts_only_num)): |
|
examplenew = example1.copy() |
|
instruction = data[i]['instruction'] |
|
output = data[i].get('output', '') |
|
assert not chat, "No gradio must use chat=False, uses nochat instruct" |
|
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction |
|
examplenew[eval_func_param_names.index('iinput_nochat')] = '' |
|
examplenew[eval_func_param_names.index('context')] = get_context(chat_context, prompt_type) |
|
examples.append(examplenew) |
|
responses.append(output) |
|
|
|
num_examples = len(examples) |
|
scoring_path = 'scoring' |
|
os.makedirs(scoring_path, exist_ok=True) |
|
if eval_as_output: |
|
used_base_model = 'gpt35' |
|
used_lora_weights = '' |
|
used_inference_server = '' |
|
else: |
|
used_base_model = str(base_model.split('/')[-1]) |
|
used_lora_weights = str(lora_weights.split('/')[-1]) |
|
used_inference_server = str(inference_server.split('/')[-1]) |
|
eval_out_filename = "df_scores_%s_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_prompts_only_num, |
|
eval_prompts_only_seed, |
|
eval_as_output, |
|
used_base_model, |
|
used_lora_weights, |
|
used_inference_server, |
|
) |
|
eval_out_filename = os.path.join(scoring_path, eval_out_filename) |
|
|
|
|
|
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0 |
|
device = 'cpu' if n_gpus == 0 else 'cuda' |
|
context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device |
|
|
|
with context_class(device): |
|
|
|
assert not stream_output, "stream_output=True does not make sense with example loop" |
|
import time |
|
from functools import partial |
|
|
|
|
|
smodel, stokenizer, sdevice = get_score_model(reward_type=True, |
|
**get_kwargs(get_score_model, exclude_names=['reward_type'], |
|
**locals())) |
|
|
|
if not eval_as_output: |
|
model, tokenizer, device = get_model(reward_type=False, |
|
**get_kwargs(get_model, exclude_names=['reward_type'], **locals())) |
|
model_dict = dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model, |
|
lora_weights=lora_weights, |
|
inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict) |
|
model_state = dict(model=model, tokenizer=tokenizer, device=device) |
|
model_state.update(model_dict) |
|
my_db_state = [None] |
|
fun = partial(evaluate, model_state, my_db_state, |
|
**get_kwargs(evaluate, exclude_names=['model_state', 'my_db_state'] + eval_func_param_names, |
|
**locals())) |
|
else: |
|
assert eval_prompts_only_num > 0 |
|
|
|
def get_response(*args, exi=0): |
|
|
|
yield responses[exi] |
|
|
|
fun = get_response |
|
t0 = time.time() |
|
score_dump = [] |
|
score_avg = 0 |
|
score_median = 0 |
|
|
|
for exi, ex in enumerate(examples): |
|
clear_torch_cache() |
|
|
|
instruction = ex[eval_func_param_names.index('instruction_nochat')] |
|
iinput = ex[eval_func_param_names.index('iinput_nochat')] |
|
context = ex[eval_func_param_names.index('context')] |
|
clear_torch_cache() |
|
print("") |
|
print("START" + "=" * 100) |
|
print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else ''))) |
|
print("-" * 105) |
|
|
|
|
|
t1 = time.time() |
|
gener = fun(*tuple(ex), exi=exi) if eval_as_output else fun(*tuple(ex)) |
|
for res_fun in gener: |
|
res = res_fun['response'] |
|
extra = res_fun['sources'] |
|
print(res) |
|
if smodel: |
|
score_with_prompt = False |
|
if score_with_prompt: |
|
data_point = dict(instruction=instruction, input=iinput, context=context) |
|
prompter = Prompter(prompt_type, prompt_dict, |
|
debug=debug, chat=chat, stream_output=stream_output) |
|
prompt = prompter.generate_prompt(data_point) |
|
else: |
|
|
|
if eval_prompts_only_num > 0: |
|
|
|
assert iinput in [None, ''], iinput |
|
if not (chat_context and prompt_type == 'human_bot'): |
|
assert context in [None, ''], context |
|
prompt = instruction |
|
if memory_restriction_level > 0: |
|
cutoff_len = 768 if memory_restriction_level <= 2 else 512 |
|
else: |
|
cutoff_len = tokenizer.model_max_length |
|
inputs = stokenizer(prompt, res, |
|
return_tensors="pt", |
|
truncation=True, |
|
max_length=cutoff_len) |
|
try: |
|
score = torch.sigmoid(smodel(**inputs).logits[0].float()).cpu().detach().numpy()[0] |
|
except torch.cuda.OutOfMemoryError as e: |
|
print("GPU OOM 1: question: %s answer: %s exception: %s" % (prompt, res, str(e)), |
|
flush=True) |
|
traceback.print_exc() |
|
score = 0.0 |
|
clear_torch_cache() |
|
except (Exception, RuntimeError) as e: |
|
if 'Expected all tensors to be on the same device' in str(e) or \ |
|
'expected scalar type Half but found Float' in str(e) or \ |
|
'probability tensor contains either' in str(e) or \ |
|
'cublasLt ran into an error!' in str(e): |
|
print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)), |
|
flush=True) |
|
traceback.print_exc() |
|
score = 0.0 |
|
clear_torch_cache() |
|
else: |
|
raise |
|
score_dump.append(ex + [prompt, res, score]) |
|
|
|
df_scores = pd.DataFrame(score_dump, |
|
columns=eval_func_param_names + eval_extra_columns) |
|
df_scores.to_parquet(eval_out_filename, index=False) |
|
|
|
plt.figure(figsize=(10, 10)) |
|
plt.hist(df_scores['score'], bins=20) |
|
score_avg = np.mean(df_scores['score']) |
|
score_median = np.median(df_scores['score']) |
|
print("SCORE %s: %s So far: AVG: %s MEDIAN: %s" % (exi, score, score_avg, score_median), |
|
flush=True) |
|
plt.title("Score avg: %s median: %s" % (score_avg, score_median)) |
|
plt.savefig(eval_out_filename.replace('.parquet', '.png')) |
|
plt.close() |
|
|
|
print("END" + "=" * 102) |
|
print("") |
|
t2 = time.time() |
|
print("Time taken for example: %s Time taken so far: %.4f about %.4g per example" % ( |
|
t2 - t1, t2 - t0, (t2 - t0) / (1 + exi))) |
|
t1 = time.time() |
|
print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples)) |
|
print("Score avg: %s median: %s" % (score_avg, score_median), flush=True) |
|
return eval_out_filename |
|
|