h2osiri / src /eval.py
ariel0330's picture
Upload folder using huggingface_hub
7e60a5e
import inspect
import os
import traceback
import numpy as np
import pandas as pd
import torch
from matplotlib import pyplot as plt
from evaluate_params import eval_func_param_names, eval_extra_columns
from gen import get_context, get_score_model, get_model, evaluate, check_locals
from prompter import Prompter
from utils import clear_torch_cache, NullContext, get_kwargs
def run_eval( # for local function:
base_model=None, lora_weights=None, inference_server=None,
prompt_type=None, prompt_dict=None,
debug=None, chat=False, chat_context=None, stream_output=None,
eval_filename=None, eval_prompts_only_num=None, eval_prompts_only_seed=None, eval_as_output=None,
examples=None, memory_restriction_level=None,
# for get_model:
score_model=None, load_8bit=None, load_4bit=None, load_half=None, load_gptq=None, use_safetensors=None,
use_gpu_id=None, tokenizer_base_model=None,
gpu_id=None, local_files_only=None, resume_download=None, use_auth_token=None,
trust_remote_code=None, offload_folder=None, compile_model=None,
# for evaluate args beyond what's already above, or things that are always dynamic and locally created
temperature=None,
top_p=None,
top_k=None,
num_beams=None,
max_new_tokens=None,
min_new_tokens=None,
early_stopping=None,
max_time=None,
repetition_penalty=None,
num_return_sequences=None,
do_sample=None,
langchain_mode=None,
langchain_action=None,
langchain_agents=[],
top_k_docs=None,
chunk=None,
chunk_size=None,
document_subset=None,
document_choice=None,
# for evaluate kwargs:
src_lang=None, tgt_lang=None, concurrency_count=None, save_dir=None, sanitize_bot_response=None,
model_state0=None,
max_max_new_tokens=None,
is_public=None,
max_max_time=None,
raise_generate_gpu_exceptions=None, load_db_if_exists=None, use_llm_if_no_docs=None,
dbs=None, user_path=None,
detect_user_path_changes_every_query=None,
use_openai_embedding=None, use_openai_model=None, hf_embedding_model=None,
db_type=None, n_jobs=None, first_para=None, text_limit=None, verbose=None, cli=None, reverse_docs=None,
use_cache=None,
auto_reduce_chunks=None, max_chunks=None,
model_lock=None, force_langchain_evaluate=None,
model_state_none=None,
):
check_locals(**locals())
if eval_prompts_only_num > 0:
np.random.seed(eval_prompts_only_seed)
example1 = examples[-1] # pick reference example
examples = []
responses = []
if eval_filename is None:
# override default examples with shareGPT ones for human-level eval purposes only
eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json'
if not os.path.isfile(eval_filename):
os.system(
'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename)
import json
data = json.load(open(eval_filename, 'rt'))
# focus on data that starts with human, else likely chopped from other data
turn_start = 0 # odd in general
data = [x for x in data if len(x['conversations']) > turn_start + 1 and
x['conversations'][turn_start]['from'] == 'human' and
x['conversations'][turn_start + 1]['from'] == 'gpt']
for i in sorted(np.random.randint(0, len(data), size=eval_prompts_only_num)):
assert data[i]['conversations'][turn_start]['from'] == 'human'
instruction = data[i]['conversations'][turn_start]['value']
assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
output = data[i]['conversations'][turn_start + 1]['value']
examplenew = example1.copy()
assert not chat, "No gradio must use chat=False, uses nochat instruct"
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
examplenew[eval_func_param_names.index('context')] = get_context(chat_context, prompt_type)
examples.append(examplenew)
responses.append(output)
else:
# get data, assume in correct format: json of rows of dict of instruction and output
# only instruction is required
import json
data = json.load(open(eval_filename, 'rt'))
for i in sorted(np.random.randint(0, len(data), size=eval_prompts_only_num)):
examplenew = example1.copy()
instruction = data[i]['instruction']
output = data[i].get('output', '') # not required
assert not chat, "No gradio must use chat=False, uses nochat instruct"
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
examplenew[eval_func_param_names.index('context')] = get_context(chat_context, prompt_type)
examples.append(examplenew)
responses.append(output)
num_examples = len(examples)
scoring_path = 'scoring'
os.makedirs(scoring_path, exist_ok=True)
if eval_as_output:
used_base_model = 'gpt35'
used_lora_weights = ''
used_inference_server = ''
else:
used_base_model = str(base_model.split('/')[-1])
used_lora_weights = str(lora_weights.split('/')[-1])
used_inference_server = str(inference_server.split('/')[-1])
eval_out_filename = "df_scores_%s_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_prompts_only_num,
eval_prompts_only_seed,
eval_as_output,
used_base_model,
used_lora_weights,
used_inference_server,
)
eval_out_filename = os.path.join(scoring_path, eval_out_filename)
# torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
device = 'cpu' if n_gpus == 0 else 'cuda'
context_class = NullContext if n_gpus > 1 or n_gpus == 0 else torch.device
with context_class(device):
# ensure was set right above before examples generated
assert not stream_output, "stream_output=True does not make sense with example loop"
import time
from functools import partial
# get score model
smodel, stokenizer, sdevice = get_score_model(reward_type=True,
**get_kwargs(get_score_model, exclude_names=['reward_type'],
**locals()))
if not eval_as_output:
model, tokenizer, device = get_model(reward_type=False,
**get_kwargs(get_model, exclude_names=['reward_type'], **locals()))
model_dict = dict(base_model=base_model, tokenizer_base_model=tokenizer_base_model,
lora_weights=lora_weights,
inference_server=inference_server, prompt_type=prompt_type, prompt_dict=prompt_dict)
model_state = dict(model=model, tokenizer=tokenizer, device=device)
model_state.update(model_dict)
my_db_state = [None]
fun = partial(evaluate, model_state, my_db_state,
**get_kwargs(evaluate, exclude_names=['model_state', 'my_db_state'] + eval_func_param_names,
**locals()))
else:
assert eval_prompts_only_num > 0
def get_response(*args, exi=0):
# assumes same ordering of examples and responses
yield responses[exi]
fun = get_response
t0 = time.time()
score_dump = []
score_avg = 0
score_median = 0
for exi, ex in enumerate(examples):
clear_torch_cache()
instruction = ex[eval_func_param_names.index('instruction_nochat')]
iinput = ex[eval_func_param_names.index('iinput_nochat')]
context = ex[eval_func_param_names.index('context')]
clear_torch_cache()
print("")
print("START" + "=" * 100)
print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else '')))
print("-" * 105)
# fun yields as generator, so have to iterate over it
# Also means likely do NOT want --stream_output=True, else would show all generations
t1 = time.time()
gener = fun(*tuple(ex), exi=exi) if eval_as_output else fun(*tuple(ex))
for res_fun in gener:
res = res_fun['response']
extra = res_fun['sources']
print(res)
if smodel:
score_with_prompt = False
if score_with_prompt:
data_point = dict(instruction=instruction, input=iinput, context=context)
prompter = Prompter(prompt_type, prompt_dict,
debug=debug, chat=chat, stream_output=stream_output)
prompt = prompter.generate_prompt(data_point)
else:
# just raw input and output
if eval_prompts_only_num > 0:
# only our own examples have this filled at moment
assert iinput in [None, ''], iinput # should be no iinput
if not (chat_context and prompt_type == 'human_bot'):
assert context in [None, ''], context # should be no context
prompt = instruction
if memory_restriction_level > 0:
cutoff_len = 768 if memory_restriction_level <= 2 else 512
else:
cutoff_len = tokenizer.model_max_length
inputs = stokenizer(prompt, res,
return_tensors="pt",
truncation=True,
max_length=cutoff_len)
try:
score = torch.sigmoid(smodel(**inputs).logits[0].float()).cpu().detach().numpy()[0]
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM 1: question: %s answer: %s exception: %s" % (prompt, res, str(e)),
flush=True)
traceback.print_exc()
score = 0.0
clear_torch_cache()
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)),
flush=True)
traceback.print_exc()
score = 0.0
clear_torch_cache()
else:
raise
score_dump.append(ex + [prompt, res, score])
# dump every score in case abort
df_scores = pd.DataFrame(score_dump,
columns=eval_func_param_names + eval_extra_columns)
df_scores.to_parquet(eval_out_filename, index=False)
# plot histogram so far
plt.figure(figsize=(10, 10))
plt.hist(df_scores['score'], bins=20)
score_avg = np.mean(df_scores['score'])
score_median = np.median(df_scores['score'])
print("SCORE %s: %s So far: AVG: %s MEDIAN: %s" % (exi, score, score_avg, score_median),
flush=True)
plt.title("Score avg: %s median: %s" % (score_avg, score_median))
plt.savefig(eval_out_filename.replace('.parquet', '.png'))
plt.close()
print("END" + "=" * 102)
print("")
t2 = time.time()
print("Time taken for example: %s Time taken so far: %.4f about %.4g per example" % (
t2 - t1, t2 - t0, (t2 - t0) / (1 + exi)))
t1 = time.time()
print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples))
print("Score avg: %s median: %s" % (score_avg, score_median), flush=True)
return eval_out_filename