Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,45 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from firebase_admin import credentials, db
|
5 |
-
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
6 |
-
from transformers import RagRetriever
|
7 |
|
|
|
|
|
|
|
|
|
8 |
retriever = RagRetriever.from_pretrained(
|
9 |
"facebook/rag-token-base",
|
10 |
use_dummy_dataset=True,
|
11 |
trust_remote_code=True
|
12 |
)
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
# Initialize Firebase Admin SDK
|
17 |
-
firebase_credential = os.getenv("FIREBASE_CREDENTIALS")
|
18 |
-
if not firebase_credential:
|
19 |
-
raise RuntimeError("FIREBASE_CREDENTIALS environment variable is not set.")
|
20 |
-
|
21 |
-
# Save Firebase credentials to a temporary file
|
22 |
-
with open("serviceAccountKey.json", "w") as f:
|
23 |
-
f.write(firebase_credential)
|
24 |
-
|
25 |
-
# Initialize Firebase App
|
26 |
-
cred = credentials.Certificate("serviceAccountKey.json")
|
27 |
-
firebase_admin.initialize_app(cred, {"databaseURL": "https://your-database-name.firebaseio.com/"})
|
28 |
-
|
29 |
-
# Load the RAG model, tokenizer, and retriever
|
30 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
|
31 |
-
|
|
|
32 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-base")
|
33 |
|
34 |
-
#
|
35 |
-
def generate_answer(question
|
36 |
-
# Tokenize the question
|
37 |
inputs = tokenizer(question, return_tensors="pt")
|
38 |
|
39 |
-
# Retrieve relevant documents
|
40 |
-
|
41 |
-
|
42 |
|
43 |
-
#
|
44 |
-
|
45 |
-
|
|
|
|
|
46 |
|
47 |
-
# Decode the generated answer
|
48 |
-
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
-
return answer
|
50 |
-
|
51 |
-
# Gradio interface function
|
52 |
-
def dashboard(question):
|
53 |
-
# Generate the answer from the RAG model
|
54 |
-
answer = generate_answer(question)
|
55 |
return answer
|
56 |
|
57 |
-
#
|
58 |
-
interface = gr.Interface(fn=dashboard, inputs="text", outputs="text")
|
59 |
-
|
60 |
-
# Launch the Gradio app
|
61 |
if __name__ == "__main__":
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import RagRetriever, RagTokenizer, RagSequenceForGeneration
|
3 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
4 |
|
5 |
+
# Step 1: Load the dataset with the trust_remote_code flag enabled
|
6 |
+
dataset = load_dataset("wiki_dpr", trust_remote_code=True)
|
7 |
+
|
8 |
+
# Step 2: Load the retriever using the pre-trained model, with use_dummy_dataset=True and trust_remote_code=True
|
9 |
retriever = RagRetriever.from_pretrained(
|
10 |
"facebook/rag-token-base",
|
11 |
use_dummy_dataset=True,
|
12 |
trust_remote_code=True
|
13 |
)
|
14 |
|
15 |
+
# Step 3: Load the tokenizer for the RAG model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")
|
17 |
+
|
18 |
+
# Step 4: Initialize the RAG model
|
19 |
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-base")
|
20 |
|
21 |
+
# Step 5: Define a function to generate an answer using the retriever and model
|
22 |
+
def generate_answer(question):
|
23 |
+
# Tokenize the question
|
24 |
inputs = tokenizer(question, return_tensors="pt")
|
25 |
|
26 |
+
# Retrieve relevant documents using the retriever
|
27 |
+
input_ids = inputs["input_ids"]
|
28 |
+
retrieved_doc_ids = retriever.retrieve(input_ids)
|
29 |
|
30 |
+
# Use the model to generate an answer based on the retrieved documents
|
31 |
+
generated_ids = model.generate(input_ids, context_input_ids=retrieved_doc_ids["context_input_ids"])
|
32 |
+
|
33 |
+
# Decode the generated answer back to text
|
34 |
+
answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
return answer
|
37 |
|
38 |
+
# Step 6: Example usage
|
|
|
|
|
|
|
39 |
if __name__ == "__main__":
|
40 |
+
question = "Who was the first president of the United States?"
|
41 |
+
print(f"Question: {question}")
|
42 |
+
|
43 |
+
# Generate and print the answer
|
44 |
+
answer = generate_answer(question)
|
45 |
+
print(f"Answer: {answer}")
|