Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain import PromptTemplate | |
from langchain.llms import HuggingFaceHub | |
from langchain.chains import RetrievalQA | |
from langchain.embeddings import SentenceTransformerEmbeddings | |
from qdrant_client import QdrantClient | |
from langchain.vectorstores import Qdrant | |
from huggingface_hub import login | |
from langchain.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
import os | |
# Set up Streamlit UI | |
st.title("HuggingFace QA with Langchain and Qdrant") | |
st.write("This app leverages a Language Model to provide answers to your questions using retrieved context.") | |
# Load HuggingFace token from environment variable for HuggingFace Space | |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
# Log in to HuggingFace Hub | |
if huggingface_token: | |
login(token=huggingface_token) | |
else: | |
st.error("HuggingFace token not found. Please set the HUGGINGFACE_TOKEN environment variable.") | |
# HuggingFace Inference API Configuration | |
config = { | |
'max_new_tokens': 1024, | |
'temperature': 0.1, | |
'top_k': 50, | |
'top_p': 0.9 | |
} | |
# Use HuggingFaceHub for LLM | |
llm = HuggingFaceHub(repo_id="stanford-crfm/BioMedLM", model_kwargs=config, huggingfacehub_api_token=huggingface_token) | |
st.write("LLM Initialized....") | |
prompt_template = """Use the following pieces of information to answer the user's question. | |
If you don't know the answer, just say that you don't know, don't try to make up an answer. | |
Context: {context} | |
Question: {question} | |
Only return the helpful answer below and nothing else. | |
Helpful answer: | |
""" | |
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings") | |
# PDF Loader and Document Processing | |
uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) | |
if uploaded_file is not None: | |
loader = PyPDFLoader(uploaded_file) | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
docs = text_splitter.split_documents(documents) | |
# Create Chroma Vector Store from PDF | |
db = Chroma.from_documents(docs, embeddings) | |
retriever = db.as_retriever(search_kwargs={"k": 1}) | |
else: | |
# Use Qdrant if no PDF is uploaded | |
url = "http://localhost:6333" | |
client = QdrantClient( | |
url=url, prefer_grpc=False | |
) | |
db = Qdrant(client=client, embeddings=embeddings, collection_name="vector_db") | |
retriever = db.as_retriever(search_kwargs={"k": 1}) | |
prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question']) | |
# Streamlit Form to get user input | |
with st.form(key='query_form'): | |
query = st.text_input("Enter your question here:") | |
submit_button = st.form_submit_button(label='Get Answer') | |
# Handle form submission | |
if submit_button and query: | |
chain_type_kwargs = {"prompt": prompt} | |
qa = RetrievalQA.from_chain_type( | |
llm=llm, | |
chain_type="stuff", | |
retriever=retriever, | |
return_source_documents=True, | |
chain_type_kwargs=chain_type_kwargs, | |
verbose=True | |
) | |
response = qa(query) | |
answer = response['result'] | |
source_document = response['source_documents'][0].page_content | |
doc = response['source_documents'][0].metadata.get('source', 'Uploaded PDF') | |
# Display the results | |
st.write("## Answer:") | |
st.write(answer) | |
st.write("## Source Document:") | |
st.write(source_document) | |
st.write("## Document Source:") | |
st.write(doc) | |