File size: 7,050 Bytes
1ddf964
8860bd4
 
 
1ddf964
8860bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import streamlit as st
import altair as alt
import numpy as np
import pandas as pd

st.markdown(
    """
        <style>
@font-face {
  font-family: 'Tangerine';
  font-style: normal;
  font-weight: 400;
  src: url(https://fonts.gstatic.com/s/tangerine/v12/IurY6Y5j_oScZZow4VOxCZZM.woff2) format('woff2');
  unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD;
}

    html, body, [class*="css"]  {
    font-family: 'Public Sans', sans-serif;
    # font-size: 1rem;
    }
    </style>

    """,
    unsafe_allow_html=True,
)


# Define params
st.subheader("Configuration")
col1, col2 = st.columns(2)

# Chances of developing symptoms (per day)
with col1:
    symptoms_chance = st.slider(
        'Chances of developing symptoms if infected (per day)', min_value=0.0, max_value=1.0, value=0.5, step=0.01)

# Days spent inf asympt
with col1:
    mean_days_inf_asympt = st.slider(
        'Mean number of days as infectious asymptomatic (without routine testing)', min_value=1, max_value=14, value=4, step=1)
    base_p00 = 1-(1/mean_days_inf_asympt)
    base_p01 = (1-symptoms_chance)*(1/mean_days_inf_asympt)
    base_p03 = (symptoms_chance)*(1/mean_days_inf_asympt)

# Days spent inf asympt
with col2:
    mean_days_inf_sympt = st.slider(
        'Mean number of days as infectious symptomatic (when testing on symptoms only)', min_value=1, max_value=14, value=2, step=1)
    base_p11 = 1-(1/mean_days_inf_sympt)
    base_p12 = (1/mean_days_inf_sympt)

# Wearable efficiency
    efficiency = st.radio(
        "Performance of device",
        ('Standard', 'Conservative'))
# with col2:
#     wear_efficiency = st.slider(
#         'Sensitivity of device', min_value=0.0, max_value=1.0, value=0.2, step=0.01)  # 👈 this is a widget



# # Calculate
# test_efficiency = np.linspace(1, 30, 30)
# days_inf = np.zeros((len(test_efficiency)))
# temp_df = []
# for tau_count, t_e in enumerate(test_efficiency):
#     tau = 1/t_e
#     pi = wear_efficiency
#     # Transition matrix
#     p = np.array([
#         [base_p00*(1-tau)*(1-pi), base_p01*(1-tau) *
#          (1-pi), 1-(1-tau)*(1-pi), base_p03*(1-tau)*(1-pi)],
#         [0, base_p11*(1-tau)*(1-pi), base_p12*(1+tau+pi-tau*pi), 0.0],
#                 [0, 0, 1.0, 0.0],
#                 [0, 0, 0.0, 1.0]
#                 ])

#     m1 = 1/(1-p[0,0])
#     m2 = 1/(1-p[1,1])
#     p2 = p[0,1]/(p[0,1]+p[0,2]+p[0,3])
#     days_inf[int(tau_count)] = m1 + p2*m2
#     routine_tests_required = 30 * days_inf[2]

# Cost case
sens_list_standard = {0.0: 0.0,
             0.005: 0.05,
             0.014: 0.1,
             0.021: 0.15,
             0.05: 0.295,
             0.1: 0.434,
             0.2: 0.6,
             0.3: 0.72,
             0.4: 0.79,
             0.5: 0.86,
             0.6: 0.9,
             0.7: 0.925,
             0.8: 0.97,
             0.9: 0.99,
             1.0: 1.0}

sens_list_conservative = {
    0:  0,
    0.012: 0.050,
    0.026: 0.105,
    0.049: 0.149,
    0.072: 0.198,
    0.096: 0.248,
    0.120: 0.297,
    0.146: 0.347,
    0.184: 0.396,
    0.222: 0.446,
    0.255: 0.495,
    0.300: 0.545,
    0.349: 0.594,
    0.401: 0.644,
    0.467: 0.693,
    0.547: 0.743,
    0.621: 0.792,
    0.699: 0.842,
    0.787: 0.891,
    0.868: 0.941,
    1: 1
}

if efficiency == 'Standard':
    sens_list = sens_list_standard
else:
    sens_list = sens_list_conservative

def roc_func(x):
    return sens_list[x]

def roc_random(x):
    return x

test_efficiency = np.array([7, 30, 10000])
# FPR = np.linspace(0, 1, 11)
# FPR = [0.0, 0.005, 0.016, 0.021, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
# FPR = list(sens_list.keys())
# days_inf = np.zeros((len(test_efficiency), len(FPR)))

# for tau_count, t_e in enumerate(test_efficiency):
#     tau = 1/t_e
#     for fi_count, fi in enumerate(FPR):
#         pi = roc_func(fi)
#         alpha = tau + pi - (tau*pi)
#         m1 = 4/(1+3*alpha)
#         m2 = 2/(1 + alpha)
#         p2 = 1/2 * (1 - alpha) / (1 + 3 * alpha)
#         days_inf[int(tau_count), int(fi_count)] = m1 + p2*m2

# Calculate
test_efficiency = np.array([7, 30, 10000])
FPR = list(sens_list.keys())
days_inf = np.zeros((len(test_efficiency), len(FPR)))
temp_df = []
for tau_count, t_e in enumerate(test_efficiency):
    tau = 1/t_e
    for fi_count, fi in enumerate(FPR):
        pi = roc_func(fi)
        # Transition matrix
        p = np.array([
            [base_p00*(1-tau)*(1-pi), base_p01*(1-tau) *
            (1-pi), 1-(1-tau)*(1-pi), base_p03*(1-tau)*(1-pi)],
            [0, base_p11*(1-tau)*(1-pi), base_p12*(1+tau+pi-tau*pi), 0.0],
            [0, 0, 1.0, 0.0],
            [0, 0, 0.0, 1.0]
        ])

        m1 = 1/(1-p[0, 0])
        m2 = 1/(1-p[1, 1])
        p2 = p[0, 1]/(p[0, 1]+p[0, 2]+p[0, 3])
        days_inf[int(tau_count), int(fi_count)] = m1 + p2*m2
        routine_tests_required = 30 * days_inf[2]
        # print(routine_tests_required)

# No wearable case
no_wearables = []
tau = 1/10000
for fi_count, fi in enumerate(FPR):
    pi = roc_random(fi)
    # Transition matrix
    p = np.array([
        [base_p00*(1-tau)*(1-pi), base_p01*(1-tau) *
         (1-pi), 1-(1-tau)*(1-pi), base_p03*(1-tau)*(1-pi)],
        [0, base_p11*(1-tau)*(1-pi), base_p12*(1+tau+pi-tau*pi), 0.0],
        [0, 0, 1.0, 0.0],
        [0, 0, 0.0, 1.0]
    ])

    m1 = 1/(1-p[0, 0])
    m2 = 1/(1-p[1, 1])
    p2 = p[0, 1]/(p[0, 1]+p[0, 2]+p[0, 3])
    no_wearables.append(m1 + p2*m2)

cost = np.array(FPR)*30
no_wearable_cost = cost
# for i in range(len(test_efficiency)):0

wearable_cost = (1-(1-np.array(FPR))*(1-1/test_efficiency[2]))*30
wearable_days_inf = days_inf[2]

# Create chart
chart_data = pd.DataFrame(
    {'Tests required per month': no_wearable_cost,
        'Routine testing': no_wearables,
        'Wearable-triggered testing': wearable_days_inf})

# st.line_chart(chart_data)

chart_data_melted = chart_data.melt('Tests required per month')
print(chart_data_melted)
chart = (
    alt.Chart(
        data=chart_data_melted,
        title="",
        height=400,
    )
    .mark_line()
    # .encode(
    #     x=alt.X('Tests required per month',
    #             scale=alt.Scale(domain=[0, 30])),
    #     y=alt.Y('Average case infectious days',
    #             scale=alt.Scale(domain=[0, 6])),
    #     # color=alt.value("#162d88"),
    #     color=alt.Color("name:N"),
    #     strokeWidth=alt.value(6),
    # )
    .encode(
        x='Tests required per month',
        y=alt.Y('value:Q', axis=alt.Axis(title='Average case infectious days')),
        # y='value:Q',
        color='variable:N',
        strokeWidth=alt.value(6)
    )
    .configure_axis(
        labelFontSize=20,
        titleFontSize=20
    )

)

st.subheader("Outcome")
st.altair_chart(chart, use_container_width=True)

# col1, col2, col3 = st.columns(3)
# col1.metric("Tests required per month", int(routine_tests_required), "1.2")
# col2.metric("Tests saved", "9", "-8%")
# col3.metric("Humidity", "86%", "4%")