File size: 2,296 Bytes
3eb59a4
 
75829f5
3eb59a4
75829f5
3eb59a4
5671d43
75829f5
5671d43
 
 
75829f5
 
 
3eb59a4
75829f5
 
 
 
 
 
3eb59a4
75829f5
5671d43
 
 
 
 
 
 
 
 
75829f5
3eb59a4
5671d43
 
 
 
3eb59a4
 
 
 
75829f5
 
 
3eb59a4
75829f5
3eb59a4
 
75829f5
 
 
 
 
 
 
 
 
 
 
 
3eb59a4
75829f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import streamlit as st
import pandas as pd
import sqlite3
import plotly.express as px
import json

# Set paths to the default files
DEFAULT_PROMPT_PATH = "prompt_engineering.json"
DEFAULT_METADATA_PATH = "default_metadata.csv"
DEFAULT_DATA_PATH = "default_data.csv"

# Load the prompt engineering JSON file (use default if no user-uploaded prompt file)
with open(DEFAULT_PROMPT_PATH) as f:
    prompt_data = json.load(f)

# Function to find a query based on the user prompt
def get_query_from_prompt(user_prompt):
    for item in prompt_data['prompts']:
        if item['question'].lower() in user_prompt.lower():
            return item['query']
    return None  # Return None if no matching query is found

# Step 1: Upload metadata.csv file (or use default)
metadata_file = st.file_uploader("Upload your metadata.csv file", type=["csv"])
if metadata_file is None:
    metadata = pd.read_csv(DEFAULT_METADATA_PATH)
    st.write("Using default metadata.csv file.")
else:
    metadata = pd.read_csv(metadata_file)
    st.write("Metadata loaded successfully!")
    st.dataframe(metadata)

# Step 2: Upload CSV data file (or use default)
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
if csv_file is None:
    data = pd.read_csv(DEFAULT_DATA_PATH)
    st.write("Using default data.csv file.")
else:
    data = pd.read_csv(csv_file)
    st.write("Data Preview:")
    st.dataframe(data.head())

# Step 3: Load CSV data into a SQLite database (SQL agent)
conn = sqlite3.connect(':memory:')  # Use an in-memory SQLite database
data.to_sql('sales_data', conn, index=False, if_exists='replace')

# Step 4: Get user prompt and map to SQL query
user_prompt = st.text_input("Enter your natural language prompt:")

# Step 5: Process the prompt and generate SQL query dynamically
if user_prompt:
    query = get_query_from_prompt(user_prompt)
    if query:
        result = pd.read_sql(query, conn)
        st.write("Query Results:")
        st.dataframe(result)
        
        # If the query involves plotting (like "plot sales"), show the chart
        if "plot" in user_prompt.lower():
            fig = px.bar(result, x='Date', y='Sales', title="Sales Over Time")
            st.plotly_chart(fig)
    else:
        st.write("Sorry, I couldn't find a matching query for your prompt.")