Spaces:
Sleeping
Sleeping
Ari
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,11 +6,15 @@ from langchain import OpenAI, LLMChain, PromptTemplate
|
|
6 |
from langchain_community.utilities import SQLDatabase
|
7 |
import sqlparse
|
8 |
import logging
|
9 |
-
from sql_metadata import Parser
|
10 |
|
11 |
# OpenAI API key (ensure it is securely stored)
|
12 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# Step 1: Upload CSV data file (or use default)
|
15 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
16 |
if csv_file is None:
|
@@ -31,6 +35,29 @@ data.to_sql(table_name, conn, index=False, if_exists='replace')
|
|
31 |
valid_columns = list(data.columns)
|
32 |
st.write(f"Valid columns: {valid_columns}")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Step 3: Define SQL validation helpers
|
35 |
def validate_sql(query, valid_columns):
|
36 |
"""Validates the SQL query by ensuring it references only valid columns."""
|
@@ -38,7 +65,7 @@ def validate_sql(query, valid_columns):
|
|
38 |
columns_in_query = parser.columns
|
39 |
for column in columns_in_query:
|
40 |
if column not in valid_columns:
|
41 |
-
st.
|
42 |
return False
|
43 |
return True
|
44 |
|
@@ -62,32 +89,40 @@ SQL Query:
|
|
62 |
prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])
|
63 |
sql_generation_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
|
64 |
|
|
|
|
|
|
|
|
|
|
|
65 |
# Step 5: Generate SQL query based on user input
|
66 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
67 |
if user_prompt:
|
68 |
try:
|
69 |
-
# Step 6:
|
70 |
-
if
|
71 |
-
|
72 |
-
st.write(f"The columns are: {', '.join(valid_columns)}")
|
73 |
else:
|
74 |
columns = ', '.join(valid_columns)
|
75 |
generated_sql = sql_generation_chain.run({'question': user_prompt, 'table_name': table_name, 'columns': columns})
|
76 |
|
77 |
-
#
|
78 |
-
st.
|
79 |
|
80 |
# Step 7: Validate SQL query
|
81 |
if not validate_sql_with_sqlparse(generated_sql):
|
82 |
-
st.
|
83 |
elif not validate_sql(generated_sql, valid_columns):
|
84 |
-
st.
|
85 |
else:
|
86 |
# Step 8: Execute SQL query
|
87 |
result = pd.read_sql_query(generated_sql, conn)
|
88 |
-
st.
|
89 |
-
st.
|
90 |
|
91 |
except Exception as e:
|
92 |
logging.error(f"An error occurred: {e}")
|
93 |
-
st.
|
|
|
|
|
|
|
|
|
|
6 |
from langchain_community.utilities import SQLDatabase
|
7 |
import sqlparse
|
8 |
import logging
|
9 |
+
from sql_metadata import Parser
|
10 |
|
11 |
# OpenAI API key (ensure it is securely stored)
|
12 |
openai_api_key = os.getenv("OPENAI_API_KEY")
|
13 |
|
14 |
+
# Initialize conversation history
|
15 |
+
if 'conversation' not in st.session_state:
|
16 |
+
st.session_state.conversation = []
|
17 |
+
|
18 |
# Step 1: Upload CSV data file (or use default)
|
19 |
csv_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
20 |
if csv_file is None:
|
|
|
35 |
valid_columns = list(data.columns)
|
36 |
st.write(f"Valid columns: {valid_columns}")
|
37 |
|
38 |
+
# Function to extract column names from the question
|
39 |
+
def extract_column_name(question, valid_columns):
|
40 |
+
for column in valid_columns:
|
41 |
+
if column.lower() in question.lower():
|
42 |
+
return column
|
43 |
+
return None
|
44 |
+
|
45 |
+
# Function to generate statistical insights
|
46 |
+
def generate_statistical_insights(question, data):
|
47 |
+
if "mean" in question.lower():
|
48 |
+
column = extract_column_name(question, valid_columns)
|
49 |
+
if column:
|
50 |
+
mean_value = data[column].mean()
|
51 |
+
st.session_state.conversation.append(f"Mean of {column}: {mean_value}")
|
52 |
+
else:
|
53 |
+
st.session_state.conversation.append(f"Could not find a valid column in the question.")
|
54 |
+
elif "median" in question.lower():
|
55 |
+
column = extract_column_name(question, valid_columns)
|
56 |
+
if column:
|
57 |
+
median_value = data[column].median()
|
58 |
+
st.session_state.conversation.append(f"Median of {column}: {median_value}")
|
59 |
+
# Add more statistical insights (mode, std, etc.)
|
60 |
+
|
61 |
# Step 3: Define SQL validation helpers
|
62 |
def validate_sql(query, valid_columns):
|
63 |
"""Validates the SQL query by ensuring it references only valid columns."""
|
|
|
65 |
columns_in_query = parser.columns
|
66 |
for column in columns_in_query:
|
67 |
if column not in valid_columns:
|
68 |
+
st.session_state.conversation.append(f"Invalid column detected: {column}")
|
69 |
return False
|
70 |
return True
|
71 |
|
|
|
89 |
prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])
|
90 |
sql_generation_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
|
91 |
|
92 |
+
# Display conversation history like a text thread
|
93 |
+
st.write("### Conversation Thread")
|
94 |
+
for chat in st.session_state.conversation:
|
95 |
+
st.write(f"User: {chat}")
|
96 |
+
|
97 |
# Step 5: Generate SQL query based on user input
|
98 |
user_prompt = st.text_input("Enter your natural language prompt:")
|
99 |
if user_prompt:
|
100 |
try:
|
101 |
+
# Step 6: Handle statistical insights or generate SQL
|
102 |
+
if any(stat_term in user_prompt.lower() for stat_term in ["mean", "median", "mode", "std"]):
|
103 |
+
generate_statistical_insights(user_prompt, data)
|
|
|
104 |
else:
|
105 |
columns = ', '.join(valid_columns)
|
106 |
generated_sql = sql_generation_chain.run({'question': user_prompt, 'table_name': table_name, 'columns': columns})
|
107 |
|
108 |
+
# Display generated SQL query in the conversation thread
|
109 |
+
st.session_state.conversation.append(f"Generated SQL Query: {generated_sql}")
|
110 |
|
111 |
# Step 7: Validate SQL query
|
112 |
if not validate_sql_with_sqlparse(generated_sql):
|
113 |
+
st.session_state.conversation.append("Generated SQL is not valid.")
|
114 |
elif not validate_sql(generated_sql, valid_columns):
|
115 |
+
st.session_state.conversation.append("Generated SQL references invalid columns.")
|
116 |
else:
|
117 |
# Step 8: Execute SQL query
|
118 |
result = pd.read_sql_query(generated_sql, conn)
|
119 |
+
st.session_state.conversation.append("Query Results:")
|
120 |
+
st.session_state.conversation.append(result.to_string())
|
121 |
|
122 |
except Exception as e:
|
123 |
logging.error(f"An error occurred: {e}")
|
124 |
+
st.session_state.conversation.append(f"Error: {e}")
|
125 |
+
|
126 |
+
# Display the text input box below the conversation thread
|
127 |
+
user_input = st.text_input("Enter a question to ask the data:", key="user_input")
|
128 |
+
|