File size: 7,261 Bytes
e37eda0
3eb59a4
 
2e33de0
75829f5
75fd593
6a2a63a
e37eda0
2e33de0
 
 
1c810c3
 
 
2e33de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
937d1f9
2e33de0
cb5f50e
2e33de0
 
 
9e9d1c1
2e33de0
9e9d1c1
2e33de0
 
9e9d1c1
2e33de0
9e9d1c1
2e33de0
9e9d1c1
c263e75
2e33de0
c263e75
2e33de0
1c810c3
c263e75
 
 
b197c04
9e9d1c1
 
 
 
 
 
c263e75
9e9d1c1
c263e75
1c810c3
 
 
9e9d1c1
 
2e33de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c810c3
 
2e33de0
1c810c3
2e33de0
 
 
 
 
9e9d1c1
 
 
 
 
 
f5f5d91
9e9d1c1
 
 
 
081eac3
9e9d1c1
5cf07df
9e9d1c1
 
 
 
f5f5d91
5cf07df
 
 
2e33de0
 
 
 
 
 
 
 
 
 
5cf07df
 
99fe04f
f5f5d91
9e9d1c1
 
 
 
f5f5d91
9e9d1c1
 
e9b5d63
2e33de0
 
 
c263e75
2e33de0
 
a39cf41
5cf07df
f5f5d91
 
 
 
 
5cf07df
 
 
 
 
 
f5f5d91
5cf07df
1c810c3
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import streamlit as st
import pandas as pd
import numpy as np
import sqlite3
from langchain import OpenAI, LLMChain, PromptTemplate
import sqlparse
import logging
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
import statsmodels.api as sm  # For time series analysis
from sklearn.metrics.pairwise import cosine_similarity  # For recommendations


# Configure logging
logging.basicConfig(level=logging.ERROR, format='%(asctime)s - %(levelname)s - %(message)s')

# Step 1: Load the dataset
def load_data():
    st.header("Select or Upload a Dataset")

    dataset_options = {
        "Default Dataset": "default_data.csv",
        # Add more datasets as needed
        "Upload Your Own Dataset": None
    }

    selected_option = st.selectbox("Choose a dataset:", list(dataset_options.keys()))

    if selected_option == "Upload Your Own Dataset":
        uploaded_file = st.file_uploader("Upload your dataset (CSV file)", type=["csv"])
        if uploaded_file is not None:
            data = pd.read_csv(uploaded_file)
            st.success("Data successfully loaded!")
            return data
        else:
            st.info("Please upload a CSV file to proceed.")
            return None
    else:
        file_path = dataset_options[selected_option]
        if os.path.exists(file_path):
            data = pd.read_csv(file_path)
            st.success(f"'{selected_option}' successfully loaded!")
            return data
        else:
            st.error(f"File '{file_path}' not found.")
            return None

data = load_data()

if data is not None:
    table_name = "selected_table"  # Default table name
    valid_columns = list(data.columns)
else:
    st.stop()  # Stop the script if data is not loaded

# Initialize the LLM
llm = OpenAI(temperature=0)

# Prompt Engineering
template = """
You are an expert data scientist assistant. Given a natural language question, the name of the table, and a list of valid columns, generate code that answers the question.

Instructions:

- If the question involves data retrieval or simple aggregations, generate a SQL query.
- If the question requires statistical analysis or time series analysis, generate a Python code snippet using pandas, numpy, and statsmodels.
- If the question involves predictions, modeling, or recommendations, generate a Python code snippet using scikit-learn or pandas.
- Ensure that you only use the columns provided.
- Do not include any import statements in the code.
- Provide the code between <CODE> and </CODE> tags.

Question: {question}

Table name: {table_name}

Valid columns: {columns}

Response:
"""




prompt = PromptTemplate(template=template, input_variables=['question', 'table_name', 'columns'])

# Set up the LLM Chain
sql_generation_chain = LLMChain(llm=llm, prompt=prompt)

# Helper functions
def extract_code(response):
    """Extracts code enclosed between <CODE> and </CODE> tags."""
    import re
    pattern = r"<CODE>(.*?)</CODE>"
    match = re.search(pattern, response, re.DOTALL)
    if match:
        return match.group(1).strip()
    else:
        return None

def execute_code(code):
    """Executes the generated code and returns the result."""
    if code.strip().lower().startswith('select'):
        # It's a SQL query
        conn = sqlite3.connect(':memory:')
        data.to_sql(table_name, conn, index=False)
        try:
            result = pd.read_sql_query(code, conn)
            conn.close()
            return result
        except Exception as e:
            conn.close()
            raise e
    else:
        # It's Python code
        local_vars = {
            'pd': pd,
            'np': np,
            'data': data.copy(),
            'result': None,
            'LinearRegression': LinearRegression,
            'train_test_split': train_test_split,
            'mean_squared_error': mean_squared_error,
            'r2_score': r2_score,
            'sm': sm,  # Added statsmodels
            'cosine_similarity': cosine_similarity  # Added cosine_similarity
        }

        exec(code, {}, local_vars)
        result = local_vars.get('result')
        return result

# Process user input
def process_input():
    user_prompt = st.session_state['user_input']

    if user_prompt:
        try:
            # Append user message to history
            st.session_state.history.append({"role": "user", "content": user_prompt})

            if "columns" in user_prompt.lower():
                assistant_response = f"The columns are: {', '.join(valid_columns)}"
                st.session_state.history.append({"role": "assistant", "content": assistant_response})
            else:
                columns = ', '.join(valid_columns)
                response = sql_generation_chain.run({
                    'question': user_prompt,
                    'table_name': table_name,
                    'columns': columns
                })

                # Extract code from response
                code = extract_code(response)
                if code:
                    st.write(f"**Generated Code:**\n```python\n{code}\n```")
                    try:
                        result = execute_code(code)
                        assistant_response = "Result:"
                        st.session_state.history.append({"role": "assistant", "content": assistant_response})
                        st.session_state.history.append({"role": "assistant", "content": result})
                    except Exception as e:
                        logging.error(f"An error occurred during code execution: {e}")
                        assistant_response = f"Error executing code: {e}"
                        st.session_state.history.append({"role": "assistant", "content": assistant_response})
                else:
                    assistant_response = response.strip()
                    st.session_state.history.append({"role": "assistant", "content": assistant_response})

        except Exception as e:
            logging.error(f"An error occurred: {e}")
            assistant_response = f"Error: {e}"
            st.session_state.history.append({"role": "assistant", "content": assistant_response})

        # Reset the user_input in session state
        st.session_state['user_input'] = ''

# Initialize session state variables
if 'history' not in st.session_state:
    st.session_state.history = []

if 'user_input' not in st.session_state:
    st.session_state['user_input'] = ''


# Display the conversation history
for message in st.session_state.history:
    if message['role'] == 'user':
        st.markdown(f"**User:** {message['content']}")
    elif message['role'] == 'assistant':
        content = message['content']
        if isinstance(content, pd.DataFrame):
            st.markdown("**Assistant:** Here are the results:")
            st.dataframe(content)
        elif isinstance(content, (int, float, str, list, dict)):
            st.markdown(f"**Assistant:** {content}")
        else:
            st.markdown(f"**Assistant:** {content}")

# Place the text input after displaying the conversation
st.text_input("Enter your question:", key='user_input', on_change=process_input)