Spaces:
Sleeping
Sleeping
Update enhanced_prompt_builder.py
Browse files- enhanced_prompt_builder.py +114 -130
enhanced_prompt_builder.py
CHANGED
@@ -1,131 +1,115 @@
|
|
1 |
-
from enhanced_retriever import EnhancedRetriever
|
2 |
-
from enhanced_knowledge_graph import EnhancedKnowledgeGraph
|
3 |
-
from feedback_analyzer import FeedbackAnalyzer
|
4 |
-
from typing import List, Dict
|
5 |
-
|
6 |
-
class EnhancedPromptBuilder:
|
7 |
-
"""Enhanced prompt builder with all advanced features integrated"""
|
8 |
-
|
9 |
-
def __init__(self):
|
10 |
-
self.retriever = EnhancedRetriever()
|
11 |
-
self.knowledge_graph = EnhancedKnowledgeGraph()
|
12 |
-
self.feedback_analyzer = FeedbackAnalyzer()
|
13 |
-
|
14 |
-
def build_adaptive_prompt(self, ad_text: str, tone: str, platforms: List[str]) -> str:
|
15 |
-
"""Build an adaptive prompt using all enhancement layers"""
|
16 |
-
|
17 |
-
# 1. Get enhanced RAG results with relevance scores
|
18 |
-
rag_results = self.retriever.retrieve_with_relevance(tone, platforms)
|
19 |
-
formatted_guidance = self.retriever.format_guidance_with_scores(rag_results)
|
20 |
-
|
21 |
-
# 2. Get knowledge graph insights with traversal
|
22 |
-
kg_insights = []
|
23 |
-
|
24 |
-
# Get recommendations for each platform
|
25 |
-
for platform in platforms:
|
26 |
-
recommendations = self.knowledge_graph.get_recommendations(tone, platform)
|
27 |
-
kg_insights.append(f"\n{platform} Insights:")
|
28 |
-
kg_insights.append(f" - Compatibility Score: {recommendations['compatibility_score']:.2f}")
|
29 |
-
|
30 |
-
if recommendations['suggested_elements']:
|
31 |
-
kg_insights.append(" - Suggestions: " + ", ".join(recommendations['suggested_elements']))
|
32 |
-
|
33 |
-
if recommendations['warnings']:
|
34 |
-
kg_insights.append(" - ⚠️ Warnings: " + ", ".join(recommendations['warnings']))
|
35 |
-
|
36 |
-
if recommendations['creative_types']:
|
37 |
-
kg_insights.append(" - Recommended Creative Types: " + ", ".join(recommendations['creative_types']))
|
38 |
-
|
39 |
-
# Add relationship explanations
|
40 |
-
relationship = self.knowledge_graph.explain_relationship(tone, platform)
|
41 |
-
kg_insights.append(f" - Relationship: {relationship}")
|
42 |
-
|
43 |
-
kg_insights_str = "\n".join(kg_insights)
|
44 |
-
|
45 |
-
# 3. Get adaptive weights from feedback analysis
|
46 |
-
weights = self.feedback_analyzer.get_adaptive_weights()
|
47 |
-
|
48 |
-
# 4. Add performance insights if available
|
49 |
-
analysis = self.feedback_analyzer.analyze_patterns()
|
50 |
-
performance_notes = []
|
51 |
-
|
52 |
-
if analysis.get("recommendations"):
|
53 |
-
relevant_recs = [rec for rec in analysis["recommendations"]
|
54 |
-
if any(p.lower() in rec.lower() for p in platforms) or tone.lower() in rec.lower()]
|
55 |
-
if relevant_recs:
|
56 |
-
performance_notes.append("\nHistorical Performance Notes:")
|
57 |
-
performance_notes.extend([f" - {rec}" for rec in relevant_recs[:3]])
|
58 |
-
|
59 |
-
performance_str = "\n".join(performance_notes) if performance_notes else ""
|
60 |
-
|
61 |
-
# 5. Build the enhanced prompt
|
62 |
-
platform_str = ", ".join(platforms)
|
63 |
-
|
64 |
-
# Apply adaptive weights to emphasize better-performing combinations
|
65 |
-
weight_notes = []
|
66 |
-
for platform in platforms:
|
67 |
-
combo_key = f"{tone}_{platform}"
|
68 |
-
weight = weights.get(combo_key, 1.0)
|
69 |
-
if weight > 0.8:
|
70 |
-
weight_notes.append(f" - {platform}: High confidence (historical success)")
|
71 |
-
elif weight < 0.6:
|
72 |
-
weight_notes.append(f" - {platform}: Needs improvement (based on feedback)")
|
73 |
-
|
74 |
-
weight_str = "\n".join(weight_notes) if weight_notes else ""
|
75 |
-
|
76 |
-
prompt = f"""
|
77 |
-
You are an expert ad copywriter with access to advanced AI assistance.
|
78 |
-
|
79 |
-
TASK: Rewrite the following ad text in a {tone} tone and optimize it individually for: {platform_str}
|
80 |
-
|
81 |
-
ORIGINAL AD TEXT: "{ad_text}"
|
82 |
-
|
83 |
-
=== ENHANCED GUIDANCE (with Relevance Scores) ===
|
84 |
-
{formatted_guidance}
|
85 |
-
|
86 |
-
=== KNOWLEDGE GRAPH INSIGHTS ===
|
87 |
-
{kg_insights_str}
|
88 |
-
|
89 |
-
=== ADAPTIVE LEARNING INSIGHTS ===
|
90 |
-
{weight_str}
|
91 |
-
{performance_str}
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
"""
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
# Check overall performance
|
117 |
-
avg_rating = analysis.get("average_rating", 0)
|
118 |
-
if avg_rating < 3.5:
|
119 |
-
suggestions.append("Consider updating tone guidelines based on feedback patterns")
|
120 |
-
|
121 |
-
# Check for problematic combinations
|
122 |
-
for pattern in analysis.get("low_performing_patterns", []):
|
123 |
-
tone, platform = pattern["pattern"].split("_")
|
124 |
-
suggestions.append(f"Review and update guidelines for {tone} tone on {platform}")
|
125 |
-
|
126 |
-
# Suggest new relationships for KG
|
127 |
-
high_performers = analysis.get("high_performing_patterns", [])
|
128 |
-
if high_performers:
|
129 |
-
suggestions.append("Consider strengthening KG relationships for high-performing combinations")
|
130 |
-
|
131 |
return suggestions
|
|
|
1 |
+
from enhanced_retriever import EnhancedRetriever
|
2 |
+
from enhanced_knowledge_graph import EnhancedKnowledgeGraph
|
3 |
+
from feedback_analyzer import FeedbackAnalyzer
|
4 |
+
from typing import List, Dict
|
5 |
+
|
6 |
+
class EnhancedPromptBuilder:
|
7 |
+
"""Enhanced prompt builder with all advanced features integrated"""
|
8 |
+
|
9 |
+
def __init__(self):
|
10 |
+
self.retriever = EnhancedRetriever()
|
11 |
+
self.knowledge_graph = EnhancedKnowledgeGraph()
|
12 |
+
self.feedback_analyzer = FeedbackAnalyzer()
|
13 |
+
|
14 |
+
def build_adaptive_prompt(self, ad_text: str, tone: str, platforms: List[str]) -> str:
|
15 |
+
"""Build an adaptive prompt using all enhancement layers"""
|
16 |
+
|
17 |
+
# 1. Get enhanced RAG results with relevance scores
|
18 |
+
rag_results = self.retriever.retrieve_with_relevance(tone, platforms)
|
19 |
+
formatted_guidance = self.retriever.format_guidance_with_scores(rag_results)
|
20 |
+
|
21 |
+
# 2. Get knowledge graph insights with traversal
|
22 |
+
kg_insights = []
|
23 |
+
|
24 |
+
# Get recommendations for each platform
|
25 |
+
for platform in platforms:
|
26 |
+
recommendations = self.knowledge_graph.get_recommendations(tone, platform)
|
27 |
+
kg_insights.append(f"\n{platform} Insights:")
|
28 |
+
kg_insights.append(f" - Compatibility Score: {recommendations['compatibility_score']:.2f}")
|
29 |
+
|
30 |
+
if recommendations['suggested_elements']:
|
31 |
+
kg_insights.append(" - Suggestions: " + ", ".join(recommendations['suggested_elements']))
|
32 |
+
|
33 |
+
if recommendations['warnings']:
|
34 |
+
kg_insights.append(" - ⚠️ Warnings: " + ", ".join(recommendations['warnings']))
|
35 |
+
|
36 |
+
if recommendations['creative_types']:
|
37 |
+
kg_insights.append(" - Recommended Creative Types: " + ", ".join(recommendations['creative_types']))
|
38 |
+
|
39 |
+
# Add relationship explanations
|
40 |
+
relationship = self.knowledge_graph.explain_relationship(tone, platform)
|
41 |
+
kg_insights.append(f" - Relationship: {relationship}")
|
42 |
+
|
43 |
+
kg_insights_str = "\n".join(kg_insights)
|
44 |
+
|
45 |
+
# 3. Get adaptive weights from feedback analysis
|
46 |
+
weights = self.feedback_analyzer.get_adaptive_weights()
|
47 |
+
|
48 |
+
# 4. Add performance insights if available
|
49 |
+
analysis = self.feedback_analyzer.analyze_patterns()
|
50 |
+
performance_notes = []
|
51 |
+
|
52 |
+
if analysis.get("recommendations"):
|
53 |
+
relevant_recs = [rec for rec in analysis["recommendations"]
|
54 |
+
if any(p.lower() in rec.lower() for p in platforms) or tone.lower() in rec.lower()]
|
55 |
+
if relevant_recs:
|
56 |
+
performance_notes.append("\nHistorical Performance Notes:")
|
57 |
+
performance_notes.extend([f" - {rec}" for rec in relevant_recs[:3]])
|
58 |
+
|
59 |
+
performance_str = "\n".join(performance_notes) if performance_notes else ""
|
60 |
+
|
61 |
+
# 5. Build the enhanced prompt
|
62 |
+
platform_str = ", ".join(platforms)
|
63 |
+
|
64 |
+
# Apply adaptive weights to emphasize better-performing combinations
|
65 |
+
weight_notes = []
|
66 |
+
for platform in platforms:
|
67 |
+
combo_key = f"{tone}_{platform}"
|
68 |
+
weight = weights.get(combo_key, 1.0)
|
69 |
+
if weight > 0.8:
|
70 |
+
weight_notes.append(f" - {platform}: High confidence (historical success)")
|
71 |
+
elif weight < 0.6:
|
72 |
+
weight_notes.append(f" - {platform}: Needs improvement (based on feedback)")
|
73 |
+
|
74 |
+
weight_str = "\n".join(weight_notes) if weight_notes else ""
|
75 |
+
|
76 |
+
prompt = f"""
|
77 |
+
You are an expert ad copywriter with access to advanced AI assistance.
|
78 |
+
|
79 |
+
TASK: Rewrite the following ad text in a {tone} tone and optimize it individually for: {platform_str}
|
80 |
+
|
81 |
+
ORIGINAL AD TEXT: "{ad_text}"
|
82 |
+
|
83 |
+
=== ENHANCED GUIDANCE (with Relevance Scores) ===
|
84 |
+
{formatted_guidance}
|
85 |
+
|
86 |
+
=== KNOWLEDGE GRAPH INSIGHTS ===
|
87 |
+
{kg_insights_str}
|
88 |
+
|
89 |
+
=== ADAPTIVE LEARNING INSIGHTS ===
|
90 |
+
{weight_str}
|
91 |
+
{performance_str}
|
92 |
+
|
93 |
+
return prompt
|
94 |
+
|
95 |
+
def get_improvement_suggestions(self) -> List[str]:
|
96 |
+
"""Get suggestions for improving the system based on feedback"""
|
97 |
+
analysis = self.feedback_analyzer.analyze_patterns()
|
98 |
+
suggestions = []
|
99 |
+
|
100 |
+
# Check overall performance
|
101 |
+
avg_rating = analysis.get("average_rating", 0)
|
102 |
+
if avg_rating < 3.5:
|
103 |
+
suggestions.append("Consider updating tone guidelines based on feedback patterns")
|
104 |
+
|
105 |
+
# Check for problematic combinations
|
106 |
+
for pattern in analysis.get("low_performing_patterns", []):
|
107 |
+
tone, platform = pattern["pattern"].split("_")
|
108 |
+
suggestions.append(f"Review and update guidelines for {tone} tone on {platform}")
|
109 |
+
|
110 |
+
# Suggest new relationships for KG
|
111 |
+
high_performers = analysis.get("high_performing_patterns", [])
|
112 |
+
if high_performers:
|
113 |
+
suggestions.append("Consider strengthening KG relationships for high-performing combinations")
|
114 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
return suggestions
|