Spaces:
Sleeping
Sleeping
File size: 7,393 Bytes
5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 8dbdb70 5be7da8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')
COMPANIES = {
'Apple (AAPL)': 'AAPL',
'Microsoft (MSFT)': 'MSFT',
'Amazon (AMZN)': 'AMZN',
'Google (GOOGL)': 'GOOGL',
'Meta (META)': 'META',
'Tesla (TSLA)': 'TSLA',
'NVIDIA (NVDA)': 'NVDA',
'JPMorgan Chase (JPM)': 'JPM',
'Johnson & Johnson (JNJ)': 'JNJ',
'Walmart (WMT)': 'WMT',
'Visa (V)': 'V',
'Mastercard (MA)': 'MA',
'Procter & Gamble (PG)': 'PG',
'UnitedHealth (UNH)': 'UNH',
'Home Depot (HD)': 'HD',
'Bank of America (BAC)': 'BAC',
'Coca-Cola (KO)': 'KO',
'Pfizer (PFE)': 'PFE',
'Disney (DIS)': 'DIS',
'Netflix (NFLX)': 'NFLX'
}
def calculate_metrics(data: pd.DataFrame) -> pd.DataFrame:
df = data.copy()
# Basic metrics
df['Returns'] = df['Close'].pct_change()
df['SMA_20'] = df['Close'].rolling(window=20).mean()
df['SMA_50'] = df['Close'].rolling(window=50).mean()
# RSI
delta = df['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
df['RSI'] = 100 - (100 / (1 + rs))
# Bollinger Bands
df['BB_middle'] = df['Close'].rolling(window=20).mean()
bb_std = df['Close'].rolling(window=20).std()
df['BB_upper'] = df['BB_middle'] + (2 * bb_std)
df['BB_lower'] = df['BB_middle'] - (2 * bb_std)
return df
def create_analysis_plots(data: pd.DataFrame) -> list:
# Price and Volume Plot
fig1 = make_subplots(rows=2, cols=1, shared_xaxes=True,
subplot_titles=('Price and Moving Averages', 'Volume'),
row_heights=[0.7, 0.3],
vertical_spacing=0.1)
# Price and SMAs
fig1.add_trace(
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
row=1, col=1
)
fig1.add_trace(
go.Scatter(x=data.index, y=data['SMA_20'], name='SMA 20', line=dict(color='orange', dash='dash')),
row=1, col=1
)
fig1.add_trace(
go.Scatter(x=data.index, y=data['SMA_50'], name='SMA 50', line=dict(color='green', dash='dash')),
row=1, col=1
)
# Volume
fig1.add_trace(
go.Bar(x=data.index, y=data['Volume'], name='Volume', marker_color='lightblue'),
row=2, col=1
)
fig1.update_layout(height=600, title_text="Price Analysis")
# Technical Indicators Plot
fig2 = make_subplots(rows=2, cols=1, shared_xaxes=True,
subplot_titles=('RSI', 'Bollinger Bands'),
row_heights=[0.5, 0.5],
vertical_spacing=0.1)
# RSI
fig2.add_trace(
go.Scatter(x=data.index, y=data['RSI'], name='RSI', line=dict(color='purple')),
row=1, col=1
)
fig2.add_hline(y=70, line_dash="dash", line_color="red", row=1, col=1)
fig2.add_hline(y=30, line_dash="dash", line_color="green", row=1, col=1)
# Bollinger Bands
fig2.add_trace(
go.Scatter(x=data.index, y=data['Close'], name='Close', line=dict(color='blue')),
row=2, col=1
)
fig2.add_trace(
go.Scatter(x=data.index, y=data['BB_upper'], name='Upper BB',
line=dict(color='gray', dash='dash')),
row=2, col=1
)
fig2.add_trace(
go.Scatter(x=data.index, y=data['BB_middle'], name='Middle BB',
line=dict(color='red', dash='dash')),
row=2, col=1
)
fig2.add_trace(
go.Scatter(x=data.index, y=data['BB_lower'], name='Lower BB',
line=dict(color='gray', dash='dash')),
row=2, col=1
)
fig2.update_layout(height=600, title_text="Technical Analysis")
return [fig1, fig2]
def generate_summary(data: pd.DataFrame) -> str:
current_price = data['Close'].iloc[-1]
prev_price = data['Close'].iloc[-2]
daily_return = ((current_price - prev_price) / prev_price) * 100
rsi = data['RSI'].iloc[-1]
sma_20 = data['SMA_20'].iloc[-1]
sma_50 = data['SMA_50'].iloc[-1]
summary = f"""Market Analysis Summary:
• Current Price: ${current_price:.2f}
• Daily Change: {daily_return:+.2f}%
• Trend: {'Bullish' if sma_20 > sma_50 else 'Bearish'} (20-day MA vs 50-day MA)
• RSI: {rsi:.2f} ({'Overbought' if rsi > 70 else 'Oversold' if rsi < 30 else 'Neutral'})
• Volume: {data['Volume'].iloc[-1]:,.0f}
Technical Signals:
• Moving Averages: Price is {'above' if current_price > sma_20 else 'below'} 20-day MA
• Bollinger Bands: Price is {
'near upper band (potential resistance)' if current_price > data['BB_upper'].iloc[-1] * 0.95
else 'near lower band (potential support)' if current_price < data['BB_lower'].iloc[-1] * 1.05
else 'in middle range'}
"""
return summary
def analyze_stock(company: str, lookback_days: int = 180) -> tuple:
try:
symbol = COMPANIES[company]
end_date = datetime.now()
start_date = end_date - timedelta(days=lookback_days)
# Download data
data = yf.download(symbol, start=start_date, end=end_date)
if len(data) == 0:
return "No data available for the selected period.", None, None
# Calculate metrics
data = calculate_metrics(data)
# Generate analysis
summary = generate_summary(data)
plots = create_analysis_plots(data)
return summary, plots[0], plots[1]
except Exception as e:
return f"Error analyzing stock: {str(e)}", None, None
def refresh_analysis(company, lookback_days):
return analyze_stock(company, lookback_days)
def create_gradio_interface():
with gr.Blocks() as interface:
gr.Markdown("# Stock Market Analysis Dashboard")
with gr.Row():
company = gr.Dropdown(
choices=list(COMPANIES.keys()),
label="Select Company",
value="Apple (AAPL)"
)
lookback = gr.Slider(
minimum=30,
maximum=365,
value=180,
step=1,
label="Lookback Period (days)"
)
refresh_btn = gr.Button("Refresh Analysis")
with gr.Row():
summary = gr.Textbox(label="Analysis Summary", lines=10)
with gr.Row():
plot1 = gr.Plot(label="Price Analysis")
plot2 = gr.Plot(label="Technical Analysis")
refresh_btn.click(
fn=refresh_analysis,
inputs=[company, lookback],
outputs=[summary, plot1, plot2]
)
# Also trigger analysis when company or lookback period changes
company.change(
fn=analyze_stock,
inputs=[company, lookback],
outputs=[summary, plot1, plot2]
)
lookback.release(
fn=analyze_stock,
inputs=[company, lookback],
outputs=[summary, plot1, plot2]
)
return interface
if __name__ == "__main__":
interface = create_gradio_interface()
interface.launch(share=True) |