Spaces:
Sleeping
Sleeping
File size: 11,529 Bytes
5ead45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import gradio as gr
import os
from typing import List, Dict
import ragas
from ragas.metrics import (
context_relevancy,
faithfulness,
answer_relevancy,
context_recall
)
from datasets import load_dataset
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
CharacterTextSplitter,
SemanticTextSplitter
)
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
import torch
# Constants
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
api_token = os.getenv("HF_TOKEN")
# Text splitting strategies
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
splitters = {
"recursive": RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"fixed": CharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"semantic": SemanticTextSplitter(
embedding_function=HuggingFaceEmbeddings().embed_query,
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
}
return splitters.get(strategy)
# Load and split PDF document
def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = get_text_splitter(splitting_strategy)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Vector database creation functions
def create_faiss_db(splits, embeddings):
return FAISS.from_documents(splits, embeddings)
def create_chroma_db(splits, embeddings):
return Chroma.from_documents(splits, embeddings)
def create_qdrant_db(splits, embeddings):
return Qdrant.from_documents(
splits,
embeddings,
location=":memory:",
collection_name="pdf_docs"
)
def create_db(splits, db_choice: str = "faiss"):
embeddings = HuggingFaceEmbeddings()
db_creators = {
"faiss": create_faiss_db,
"chroma": create_chroma_db,
"qdrant": create_qdrant_db
}
return db_creators[db_choice](splits, embeddings)
# Evaluation functions
def load_evaluation_dataset():
# Load example dataset from RAGAS
dataset = load_dataset("explodinggradients/fiqa", split="test")
return dataset
def evaluate_rag_pipeline(qa_chain, dataset):
# Sample a few examples for evaluation
eval_samples = dataset.select(range(5))
results = {
"context_relevancy": [],
"faithfulness": [],
"answer_relevancy": [],
"context_recall": []
}
for sample in eval_samples:
question = sample["question"]
ground_truth = sample["answer"]
# Get response from the chain
response = qa_chain.invoke({
"question": question,
"chat_history": []
})
# Evaluate using RAGAS metrics
metrics = {
"context_relevancy": context_relevancy.score(
question=question,
answer=response["answer"],
contexts=response["source_documents"]
),
"faithfulness": faithfulness.score(
question=question,
answer=response["answer"],
contexts=response["source_documents"]
),
"answer_relevancy": answer_relevancy.score(
question=question,
answer=response["answer"]
),
"context_recall": context_recall.score(
question=question,
answer=response["answer"],
contexts=response["source_documents"],
ground_truth=ground_truth
)
}
for metric, score in metrics.items():
results[metric].append(score)
# Calculate average scores
avg_results = {
metric: sum(scores) / len(scores)
for metric, scores in results.items()
}
return avg_results
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
else:
llm = HuggingFaceEndpoint(
huggingfacehub_api_token=api_token,
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
# Initialize database with chunking strategy and vector DB choice
def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path, splitting_strategy)
vector_db = create_db(doc_splits, db_choice)
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!"
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot</h1></center>")
gr.Markdown("""<b>Query your PDF documents with advanced RAG capabilities!</b>""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
with gr.Row():
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
with gr.Row():
splitting_strategy = gr.Radio(
["recursive", "fixed", "semantic"],
label="Text Splitting Strategy",
value="recursive"
)
db_choice = gr.Radio(
["faiss", "chroma", "qdrant"],
label="Vector Database",
value="faiss"
)
with gr.Row():
db_btn = gr.Button("Create vector database")
evaluate_btn = gr.Button("Evaluate RAG Pipeline")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False)
evaluation_results = gr.JSON(label="Evaluation Results")
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens")
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
with gr.Column(scale=200):
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source document", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Event handlers
db_btn.click(
initialize_database,
inputs=[document, splitting_strategy, db_choice],
outputs=[vector_db, db_progress]
)
evaluate_btn.click(
lambda qa_chain: evaluate_rag_pipeline(qa_chain, load_evaluation_dataset()) if qa_chain else None,
inputs=[qa_chain],
outputs=[evaluation_results]
)
qachain_btn.click(
initialize_LLM,
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
# Chatbot event handlers remain the same
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |