File size: 13,078 Bytes
5ead45e
 
 
6cec587
5ead45e
 
 
 
6cec587
5ead45e
 
 
 
 
 
 
6cec587
5ead45e
 
6cec587
5ead45e
 
 
 
6cec587
 
 
5ead45e
 
 
 
 
 
 
 
 
 
 
6cec587
5ead45e
 
 
 
 
 
6cec587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ead45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0981a93
5ead45e
 
6cec587
5ead45e
 
 
6cec587
5ead45e
 
 
 
 
 
 
 
 
6cec587
 
 
 
 
 
 
 
 
5ead45e
6cec587
 
 
 
1596101
6cec587
 
5ead45e
 
715be0e
 
 
 
 
 
 
 
 
 
 
 
5ead45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
715be0e
5ead45e
 
 
 
 
 
 
1596101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ead45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cec587
5ead45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a4f0c0
5ead45e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import gradio as gr
import os
from typing import List, Dict
import numpy as np
from datasets import load_dataset
from langchain.text_splitter import (
    RecursiveCharacterTextSplitter,
    CharacterTextSplitter,
    TokenTextSplitter
)
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer, util
import torch

# Constants and setup
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
api_token = os.getenv("HF_TOKEN")

# Initialize sentence transformer for evaluation
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# Text splitting strategies
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
    splitters = {
        "recursive": RecursiveCharacterTextSplitter(
            chunk_size=chunk_size,
            chunk_overlap=chunk_overlap
        ),
        "fixed": CharacterTextSplitter(
            chunk_size=chunk_size,
            chunk_overlap=chunk_overlap
        ),
        "token": TokenTextSplitter(
            chunk_size=chunk_size,
            chunk_overlap=chunk_overlap
        )
    }
    return splitters.get(strategy)

# Custom evaluation metrics
def calculate_semantic_similarity(text1: str, text2: str) -> float:
    embeddings1 = sentence_model.encode([text1], convert_to_tensor=True)
    embeddings2 = sentence_model.encode([text2], convert_to_tensor=True)
    similarity = util.pytorch_cos_sim(embeddings1, embeddings2)
    return float(similarity[0][0])

def evaluate_response(question: str, answer: str, ground_truth: str, contexts: List[str]) -> Dict[str, float]:
    # Answer similarity with ground truth
    answer_similarity = calculate_semantic_similarity(answer, ground_truth)
    
    # Context relevance - average similarity between question and contexts
    context_scores = [calculate_semantic_similarity(question, ctx) for ctx in contexts]
    context_relevance = np.mean(context_scores)
    
    # Answer relevance - similarity between question and answer
    answer_relevance = calculate_semantic_similarity(question, answer)
    
    return {
        "answer_similarity": answer_similarity,
        "context_relevance": context_relevance,
        "answer_relevance": answer_relevance,
        "average_score": np.mean([answer_similarity, context_relevance, answer_relevance])
    }

# Load and split PDF document
def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"):
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    
    text_splitter = get_text_splitter(splitting_strategy)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Vector database creation functions
def create_faiss_db(splits, embeddings):
    return FAISS.from_documents(splits, embeddings)

def create_chroma_db(splits, embeddings):
    return Chroma.from_documents(splits, embeddings)

def create_qdrant_db(splits, embeddings):
    return Qdrant.from_documents(
        splits,
        embeddings,
        location=":memory:",
        collection_name="pdf_docs"
    )

def create_db(splits, db_choice: str = "faiss"):
    embeddings = HuggingFaceEmbeddings()
    db_creators = {
        "faiss": create_faiss_db,
        "chroma": create_chroma_db,
        "qdrant": create_qdrant_db
    }
    return db_creators[db_choice](splits, embeddings)

def load_evaluation_dataset():
    dataset = load_dataset("explodinggradients/fiqa", split="test", trust_remote_code=True)
    return dataset

def evaluate_rag_pipeline(qa_chain, dataset):
    # Sample a few examples for evaluation
    eval_samples = dataset.select(range(5))
    
    results = []
    for sample in eval_samples:
        question = sample["question"]
        
        # Get response from the chain
        response = qa_chain.invoke({
            "question": question,
            "chat_history": []
        })
        
        # Evaluate response
        eval_result = evaluate_response(
            question=question,
            answer=response["answer"],
            ground_truth=sample["answer"],
            contexts=[doc.page_content for doc in response["source_documents"]]
        )
        
        results.append(eval_result)
    
    # Calculate average scores across all samples
    avg_results = {
        metric: float(np.mean([r[metric] for r in results]))
        for metric in results[0].keys()
    }
    
    return avg_results

# Initialize langchain LLM chain
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    # Get the full model name from the index
    llm_model = list_llm[llm_choice]
    
    llm = HuggingFaceEndpoint(
        repo_id=llm_model,
        huggingfacehub_api_token=api_token,
        temperature=temperature,
        max_new_tokens=max_tokens,
        top_k=top_k,
        model=llm_model  # Add model parameter
    )
    
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    retriever = vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain, "LLM initialized successfully!"

def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()):
    list_file_path = [x.name for x in list_file_obj if x is not None]
    doc_splits = load_doc(list_file_path, splitting_strategy)
    vector_db = create_db(doc_splits, db_choice)
    return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!"

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain.invoke({
        "question": message,
        "chat_history": formatted_chat_history
    })
    
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    
    new_history = history + [(message, response_answer)]
    
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def demo():
    with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        
        gr.HTML("<center><h1>Enhanced RAG PDF Chatbot</h1></center>")
        gr.Markdown("""<b>Query your PDF documents with advanced RAG capabilities!</b>""")
        
        with gr.Row():
            with gr.Column(scale=86):
                gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
                with gr.Row():
                    document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
                
                with gr.Row():
                    splitting_strategy = gr.Radio(
                        ["recursive", "fixed", "token"],
                        label="Text Splitting Strategy",
                        value="recursive"
                    )
                    db_choice = gr.Radio(
                        ["faiss", "chroma", "qdrant"],
                        label="Vector Database",
                        value="faiss"
                    )
                
                with gr.Row():
                    db_btn = gr.Button("Create vector database")
                    evaluate_btn = gr.Button("Evaluate RAG Pipeline")
                
                with gr.Row():
                    db_progress = gr.Textbox(value="Not initialized", show_label=False)
                    evaluation_results = gr.JSON(label="Evaluation Results")
                
                gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
                with gr.Row():
                    llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
                
                with gr.Row():
                    with gr.Accordion("LLM input parameters", open=False):
                        slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature")
                        slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens")
                        slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k")
                
                with gr.Row():
                    qachain_btn = gr.Button("Initialize Question Answering Chatbot")
                    llm_progress = gr.Textbox(value="Not initialized", show_label=False)
            
            with gr.Column(scale=200):
                gr.Markdown("<b>Step 2 - Chat with your Document</b>")
                chatbot = gr.Chatbot(height=505)
                
                with gr.Accordion("Relevant context from the source document", open=False):
                    with gr.Row():
                        doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                        source1_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                        source2_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                        source3_page = gr.Number(label="Page", scale=1)
                
                with gr.Row():
                    msg = gr.Textbox(placeholder="Ask a question", container=True)
                with gr.Row():
                    submit_btn = gr.Button("Submit")
                    clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
        
        # Event handlers
        db_btn.click(
            initialize_database,
            inputs=[document, splitting_strategy, db_choice],
            outputs=[vector_db, db_progress]
        )
        
        evaluate_btn.click(
            lambda qa_chain: evaluate_rag_pipeline(qa_chain, load_evaluation_dataset()) if qa_chain else None,
            inputs=[qa_chain],
            outputs=[evaluation_results]
        )
        
        qachain_btn.click(
            initialize_llmchain,  # Fixed function name here
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
            outputs=[qa_chain, llm_progress]
        ).then(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )
        
        msg.submit(conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )
        
        submit_btn.click(conversation,
            inputs=[qa_chain, msg, chatbot],
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )
        
        clear_btn.click(
            lambda: [None, "", 0, "", 0, "", 0],
            inputs=None,
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
            queue=False
        )
    
    demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()