Spaces:
Running
Running
File size: 13,078 Bytes
5ead45e 6cec587 5ead45e 6cec587 5ead45e 6cec587 5ead45e 6cec587 5ead45e 6cec587 5ead45e 6cec587 5ead45e 6cec587 5ead45e 0981a93 5ead45e 6cec587 5ead45e 6cec587 5ead45e 6cec587 5ead45e 6cec587 1596101 6cec587 5ead45e 715be0e 5ead45e 715be0e 5ead45e 1596101 5ead45e 6cec587 5ead45e 2a4f0c0 5ead45e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import gradio as gr
import os
from typing import List, Dict
import numpy as np
from datasets import load_dataset
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
CharacterTextSplitter,
TokenTextSplitter
)
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer, util
import torch
# Constants and setup
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
api_token = os.getenv("HF_TOKEN")
# Initialize sentence transformer for evaluation
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Text splitting strategies
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
splitters = {
"recursive": RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"fixed": CharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"token": TokenTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
}
return splitters.get(strategy)
# Custom evaluation metrics
def calculate_semantic_similarity(text1: str, text2: str) -> float:
embeddings1 = sentence_model.encode([text1], convert_to_tensor=True)
embeddings2 = sentence_model.encode([text2], convert_to_tensor=True)
similarity = util.pytorch_cos_sim(embeddings1, embeddings2)
return float(similarity[0][0])
def evaluate_response(question: str, answer: str, ground_truth: str, contexts: List[str]) -> Dict[str, float]:
# Answer similarity with ground truth
answer_similarity = calculate_semantic_similarity(answer, ground_truth)
# Context relevance - average similarity between question and contexts
context_scores = [calculate_semantic_similarity(question, ctx) for ctx in contexts]
context_relevance = np.mean(context_scores)
# Answer relevance - similarity between question and answer
answer_relevance = calculate_semantic_similarity(question, answer)
return {
"answer_similarity": answer_similarity,
"context_relevance": context_relevance,
"answer_relevance": answer_relevance,
"average_score": np.mean([answer_similarity, context_relevance, answer_relevance])
}
# Load and split PDF document
def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = get_text_splitter(splitting_strategy)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Vector database creation functions
def create_faiss_db(splits, embeddings):
return FAISS.from_documents(splits, embeddings)
def create_chroma_db(splits, embeddings):
return Chroma.from_documents(splits, embeddings)
def create_qdrant_db(splits, embeddings):
return Qdrant.from_documents(
splits,
embeddings,
location=":memory:",
collection_name="pdf_docs"
)
def create_db(splits, db_choice: str = "faiss"):
embeddings = HuggingFaceEmbeddings()
db_creators = {
"faiss": create_faiss_db,
"chroma": create_chroma_db,
"qdrant": create_qdrant_db
}
return db_creators[db_choice](splits, embeddings)
def load_evaluation_dataset():
dataset = load_dataset("explodinggradients/fiqa", split="test", trust_remote_code=True)
return dataset
def evaluate_rag_pipeline(qa_chain, dataset):
# Sample a few examples for evaluation
eval_samples = dataset.select(range(5))
results = []
for sample in eval_samples:
question = sample["question"]
# Get response from the chain
response = qa_chain.invoke({
"question": question,
"chat_history": []
})
# Evaluate response
eval_result = evaluate_response(
question=question,
answer=response["answer"],
ground_truth=sample["answer"],
contexts=[doc.page_content for doc in response["source_documents"]]
)
results.append(eval_result)
# Calculate average scores across all samples
avg_results = {
metric: float(np.mean([r[metric] for r in results]))
for metric in results[0].keys()
}
return avg_results
# Initialize langchain LLM chain
def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
# Get the full model name from the index
llm_model = list_llm[llm_choice]
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
model=llm_model # Add model parameter
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain, "LLM initialized successfully!"
def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path, splitting_strategy)
vector_db = create_db(doc_splits, db_choice)
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({
"question": message,
"chat_history": formatted_chat_history
})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot</h1></center>")
gr.Markdown("""<b>Query your PDF documents with advanced RAG capabilities!</b>""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
with gr.Row():
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
with gr.Row():
splitting_strategy = gr.Radio(
["recursive", "fixed", "token"],
label="Text Splitting Strategy",
value="recursive"
)
db_choice = gr.Radio(
["faiss", "chroma", "qdrant"],
label="Vector Database",
value="faiss"
)
with gr.Row():
db_btn = gr.Button("Create vector database")
evaluate_btn = gr.Button("Evaluate RAG Pipeline")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False)
evaluation_results = gr.JSON(label="Evaluation Results")
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens")
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
with gr.Column(scale=200):
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source document", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Event handlers
db_btn.click(
initialize_database,
inputs=[document, splitting_strategy, db_choice],
outputs=[vector_db, db_progress]
)
evaluate_btn.click(
lambda qa_chain: evaluate_rag_pipeline(qa_chain, load_evaluation_dataset()) if qa_chain else None,
inputs=[qa_chain],
outputs=[evaluation_results]
)
qachain_btn.click(
initialize_llmchain, # Fixed function name here
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo() |