RAG-PDF-Chatbot / app.py
arjunanand13's picture
Update app.py
2a4f0c0 verified
raw
history blame
13.2 kB
import gradio as gr
import os
from typing import List, Dict
import numpy as np
from datasets import load_dataset
from langchain.text_splitter import (
RecursiveCharacterTextSplitter,
CharacterTextSplitter,
TokenTextSplitter
)
from langchain_community.vectorstores import FAISS, Chroma, Qdrant
from langchain_community.document_loaders import PyPDFLoader
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.llms import HuggingFaceEndpoint
from langchain.memory import ConversationBufferMemory
from sentence_transformers import SentenceTransformer, util
import torch
# Constants and setup
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
api_token = os.getenv("HF_TOKEN")
# Initialize sentence transformer for evaluation
sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Text splitting strategies
def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
splitters = {
"recursive": RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"fixed": CharacterTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
),
"token": TokenTextSplitter(
chunk_size=chunk_size,
chunk_overlap=chunk_overlap
)
}
return splitters.get(strategy)
# Custom evaluation metrics
def calculate_semantic_similarity(text1: str, text2: str) -> float:
embeddings1 = sentence_model.encode([text1], convert_to_tensor=True)
embeddings2 = sentence_model.encode([text2], convert_to_tensor=True)
similarity = util.pytorch_cos_sim(embeddings1, embeddings2)
return float(similarity[0][0])
def evaluate_response(question: str, answer: str, ground_truth: str, contexts: List[str]) -> Dict[str, float]:
# Answer similarity with ground truth
answer_similarity = calculate_semantic_similarity(answer, ground_truth)
# Context relevance - average similarity between question and contexts
context_scores = [calculate_semantic_similarity(question, ctx) for ctx in contexts]
context_relevance = np.mean(context_scores)
# Answer relevance - similarity between question and answer
answer_relevance = calculate_semantic_similarity(question, answer)
return {
"answer_similarity": answer_similarity,
"context_relevance": context_relevance,
"answer_relevance": answer_relevance,
"average_score": np.mean([answer_similarity, context_relevance, answer_relevance])
}
# Load and split PDF document
def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = get_text_splitter(splitting_strategy)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Vector database creation functions
def create_faiss_db(splits, embeddings):
return FAISS.from_documents(splits, embeddings)
def create_chroma_db(splits, embeddings):
return Chroma.from_documents(splits, embeddings)
def create_qdrant_db(splits, embeddings):
return Qdrant.from_documents(
splits,
embeddings,
location=":memory:",
collection_name="pdf_docs"
)
def create_db(splits, db_choice: str = "faiss"):
embeddings = HuggingFaceEmbeddings()
db_creators = {
"faiss": create_faiss_db,
"chroma": create_chroma_db,
"qdrant": create_qdrant_db
}
return db_creators[db_choice](splits, embeddings)
def load_evaluation_dataset():
dataset = load_dataset("explodinggradients/fiqa", split="test")
return dataset
def evaluate_rag_pipeline(qa_chain, dataset):
# Sample a few examples for evaluation
eval_samples = dataset.select(range(5))
results = []
for sample in eval_samples:
question = sample["question"]
# Get response from the chain
response = qa_chain.invoke({
"question": question,
"chat_history": []
})
# Evaluate response
eval_result = evaluate_response(
question=question,
answer=response["answer"],
ground_truth=sample["answer"],
contexts=[doc.page_content for doc in response["source_documents"]]
)
results.append(eval_result)
# Calculate average scores across all samples
avg_results = {
metric: float(np.mean([r[metric] for r in results]))
for metric in results[0].keys()
}
return avg_results
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
llm = HuggingFaceEndpoint(
repo_id=llm_model,
huggingfacehub_api_token=api_token,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
else:
llm = HuggingFaceEndpoint(
huggingfacehub_api_token=api_token,
repo_id=llm_model,
temperature=temperature,
max_new_tokens=max_tokens,
top_k=top_k,
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False,
)
return qa_chain
def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()):
list_file_path = [x.name for x in list_file_obj if x is not None]
doc_splits = load_doc(list_file_path, splitting_strategy)
vector_db = create_db(doc_splits, db_choice)
return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!"
def format_chat_history(message, chat_history):
formatted_chat_history = []
for user_message, bot_message in chat_history:
formatted_chat_history.append(f"User: {user_message}")
formatted_chat_history.append(f"Assistant: {bot_message}")
return formatted_chat_history
def conversation(qa_chain, message, history):
formatted_chat_history = format_chat_history(message, history)
response = qa_chain.invoke({
"question": message,
"chat_history": formatted_chat_history
})
response_answer = response["answer"]
if response_answer.find("Helpful Answer:") != -1:
response_answer = response_answer.split("Helpful Answer:")[-1]
response_sources = response["source_documents"]
response_source1 = response_sources[0].page_content.strip()
response_source2 = response_sources[1].page_content.strip()
response_source3 = response_sources[2].page_content.strip()
response_source1_page = response_sources[0].metadata["page"] + 1
response_source2_page = response_sources[1].metadata["page"] + 1
response_source3_page = response_sources[2].metadata["page"] + 1
new_history = history + [(message, response_answer)]
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
def demo():
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
vector_db = gr.State()
qa_chain = gr.State()
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot</h1></center>")
gr.Markdown("""<b>Query your PDF documents with advanced RAG capabilities!</b>""")
with gr.Row():
with gr.Column(scale=86):
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
with gr.Row():
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
with gr.Row():
splitting_strategy = gr.Radio(
["recursive", "fixed", "token"],
label="Text Splitting Strategy",
value="recursive"
)
db_choice = gr.Radio(
["faiss", "chroma", "qdrant"],
label="Vector Database",
value="faiss"
)
with gr.Row():
db_btn = gr.Button("Create vector database")
evaluate_btn = gr.Button("Evaluate RAG Pipeline")
with gr.Row():
db_progress = gr.Textbox(value="Not initialized", show_label=False)
evaluation_results = gr.JSON(label="Evaluation Results")
gr.Markdown("<b>Select Large Language Model (LLM) and input parameters</b>")
with gr.Row():
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value=list_llm_simple[0], type="index")
with gr.Row():
with gr.Accordion("LLM input parameters", open=False):
slider_temperature = gr.Slider(minimum=0.01, maximum=1.0, value=0.5, step=0.1, label="Temperature")
slider_maxtokens = gr.Slider(minimum=128, maximum=9192, value=4096, step=128, label="Max New Tokens")
slider_topk = gr.Slider(minimum=1, maximum=10, value=3, step=1, label="top-k")
with gr.Row():
qachain_btn = gr.Button("Initialize Question Answering Chatbot")
llm_progress = gr.Textbox(value="Not initialized", show_label=False)
with gr.Column(scale=200):
gr.Markdown("<b>Step 2 - Chat with your Document</b>")
chatbot = gr.Chatbot(height=505)
with gr.Accordion("Relevant context from the source document", open=False):
with gr.Row():
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
with gr.Row():
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
with gr.Row():
msg = gr.Textbox(placeholder="Ask a question", container=True)
with gr.Row():
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
# Event handlers
db_btn.click(
initialize_database,
inputs=[document, splitting_strategy, db_choice],
outputs=[vector_db, db_progress]
)
evaluate_btn.click(
lambda qa_chain: evaluate_rag_pipeline(qa_chain, load_evaluation_dataset()) if qa_chain else None,
inputs=[qa_chain],
outputs=[evaluation_results]
)
qachain_btn.click(
initialize_llmchain, # Fixed function name here
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
outputs=[qa_chain, llm_progress]
).then(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
msg.submit(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
submit_btn.click(conversation,
inputs=[qa_chain, msg, chatbot],
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
clear_btn.click(
lambda: [None, "", 0, "", 0, "", 0],
inputs=None,
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
queue=False
)
demo.queue().launch(debug=True)
if __name__ == "__main__":
demo()