Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Commit
•
e26ea16
1
Parent(s):
e2cc20f
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from typing import List, Dict
|
4 |
+
import numpy as np
|
5 |
+
from datasets import load_dataset
|
6 |
+
from langchain.text_splitter import (
|
7 |
+
RecursiveCharacterTextSplitter,
|
8 |
+
CharacterTextSplitter,
|
9 |
+
TokenTextSplitter
|
10 |
+
)
|
11 |
+
from langchain_community.vectorstores import FAISS, Chroma
|
12 |
+
from langchain_community.document_loaders import PyPDFLoader
|
13 |
+
from langchain.chains import ConversationalRetrievalChain
|
14 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
15 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
16 |
+
from langchain.memory import ConversationBufferMemory
|
17 |
+
from sentence_transformers import SentenceTransformer, util
|
18 |
+
import torch
|
19 |
+
from ragas import evaluate
|
20 |
+
from ragas.metrics import (
|
21 |
+
ContextRecall,
|
22 |
+
AnswerRelevancy,
|
23 |
+
Faithfulness,
|
24 |
+
ContextPrecision
|
25 |
+
)
|
26 |
+
import pandas as pd
|
27 |
+
|
28 |
+
# Constants and configurations
|
29 |
+
CHUNK_SIZES = {
|
30 |
+
"small": {"recursive": 512, "fixed": 512, "token": 256},
|
31 |
+
"medium": {"recursive": 1024, "fixed": 1024, "token": 512}
|
32 |
+
}
|
33 |
+
|
34 |
+
class RAGEvaluator:
|
35 |
+
def __init__(self):
|
36 |
+
self.datasets = {
|
37 |
+
"squad": "squad_v2",
|
38 |
+
"msmarco": "ms_marco"
|
39 |
+
}
|
40 |
+
self.current_dataset = None
|
41 |
+
self.test_samples = []
|
42 |
+
|
43 |
+
def load_dataset(self, dataset_name: str, num_samples: int = 50):
|
44 |
+
if dataset_name == "squad":
|
45 |
+
dataset = load_dataset("squad_v2", split="validation")
|
46 |
+
samples = dataset.select(range(num_samples))
|
47 |
+
self.test_samples = [
|
48 |
+
{
|
49 |
+
"question": sample["question"],
|
50 |
+
"ground_truth": sample["answers"]["text"][0] if sample["answers"]["text"] else "",
|
51 |
+
"context": sample["context"]
|
52 |
+
}
|
53 |
+
for sample in samples
|
54 |
+
if sample["answers"]["text"] # Filter out samples without answers
|
55 |
+
]
|
56 |
+
elif dataset_name == "msmarco":
|
57 |
+
dataset = load_dataset("ms_marco", "v2.1", split="train")
|
58 |
+
samples = dataset.select(range(num_samples))
|
59 |
+
self.test_samples = [
|
60 |
+
{
|
61 |
+
"question": sample["query"],
|
62 |
+
"ground_truth": sample["answers"][0] if sample["answers"] else "",
|
63 |
+
"context": sample["passages"]["passage_text"][0]
|
64 |
+
}
|
65 |
+
for sample in samples
|
66 |
+
if sample["answers"] # Filter out samples without answers
|
67 |
+
]
|
68 |
+
self.current_dataset = dataset_name
|
69 |
+
return self.test_samples
|
70 |
+
|
71 |
+
def evaluate_configuration(self,
|
72 |
+
vector_db,
|
73 |
+
qa_chain,
|
74 |
+
splitting_strategy: str,
|
75 |
+
chunk_size: str) -> Dict:
|
76 |
+
if not self.test_samples:
|
77 |
+
return {"error": "No dataset loaded"}
|
78 |
+
|
79 |
+
results = []
|
80 |
+
for sample in self.test_samples:
|
81 |
+
response = qa_chain.invoke({
|
82 |
+
"question": sample["question"],
|
83 |
+
"chat_history": []
|
84 |
+
})
|
85 |
+
|
86 |
+
results.append({
|
87 |
+
"question": sample["question"],
|
88 |
+
"answer": response["answer"],
|
89 |
+
"contexts": [doc.page_content for doc in response["source_documents"]],
|
90 |
+
"ground_truths": [sample["ground_truth"]]
|
91 |
+
})
|
92 |
+
|
93 |
+
# Convert to RAGAS dataset format
|
94 |
+
eval_dataset = Dataset.from_list(results)
|
95 |
+
|
96 |
+
# Calculate RAGAS metrics
|
97 |
+
metrics = [
|
98 |
+
ContextRecall(),
|
99 |
+
AnswerRelevancy(),
|
100 |
+
Faithfulness(),
|
101 |
+
ContextPrecision()
|
102 |
+
]
|
103 |
+
|
104 |
+
scores = evaluate(
|
105 |
+
eval_dataset,
|
106 |
+
metrics=metrics
|
107 |
+
)
|
108 |
+
|
109 |
+
return {
|
110 |
+
"configuration": f"{splitting_strategy}_{chunk_size}",
|
111 |
+
"context_recall": float(scores['context_recall']),
|
112 |
+
"answer_relevancy": float(scores['answer_relevancy']),
|
113 |
+
"faithfulness": float(scores['faithfulness']),
|
114 |
+
"context_precision": float(scores['context_precision']),
|
115 |
+
"average_score": float(np.mean([
|
116 |
+
scores['context_recall'],
|
117 |
+
scores['answer_relevancy'],
|
118 |
+
scores['faithfulness'],
|
119 |
+
scores['context_precision']
|
120 |
+
]))
|
121 |
+
}
|
122 |
+
|
123 |
+
def demo():
|
124 |
+
evaluator = RAGEvaluator()
|
125 |
+
|
126 |
+
with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
|
127 |
+
vector_db = gr.State()
|
128 |
+
qa_chain = gr.State()
|
129 |
+
|
130 |
+
gr.HTML("<center><h1>Enhanced RAG PDF Chatbot with Evaluation</h1></center>")
|
131 |
+
|
132 |
+
with gr.Tabs():
|
133 |
+
# Custom PDF Tab
|
134 |
+
with gr.Tab("Custom PDF Chat"):
|
135 |
+
# Your existing UI components here
|
136 |
+
with gr.Row():
|
137 |
+
with gr.Column(scale=86):
|
138 |
+
gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
|
139 |
+
with gr.Row():
|
140 |
+
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
|
141 |
+
|
142 |
+
with gr.Row():
|
143 |
+
splitting_strategy = gr.Radio(
|
144 |
+
["recursive", "fixed", "token"],
|
145 |
+
label="Text Splitting Strategy",
|
146 |
+
value="recursive"
|
147 |
+
)
|
148 |
+
db_choice = gr.Dropdown(
|
149 |
+
["faiss", "chroma"],
|
150 |
+
label="Vector Database",
|
151 |
+
value="faiss"
|
152 |
+
)
|
153 |
+
chunk_size = gr.Radio(
|
154 |
+
["small", "medium"],
|
155 |
+
label="Chunk Size",
|
156 |
+
value="medium"
|
157 |
+
)
|
158 |
+
|
159 |
+
# Rest of your existing UI components...
|
160 |
+
|
161 |
+
# Evaluation Tab
|
162 |
+
with gr.Tab("RAG Evaluation"):
|
163 |
+
with gr.Row():
|
164 |
+
dataset_choice = gr.Dropdown(
|
165 |
+
choices=list(evaluator.datasets.keys()),
|
166 |
+
label="Select Evaluation Dataset",
|
167 |
+
value="squad"
|
168 |
+
)
|
169 |
+
load_dataset_btn = gr.Button("Load Dataset")
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
dataset_info = gr.JSON(label="Dataset Information")
|
173 |
+
|
174 |
+
with gr.Row():
|
175 |
+
eval_splitting_strategy = gr.Radio(
|
176 |
+
["recursive", "fixed", "token"],
|
177 |
+
label="Text Splitting Strategy",
|
178 |
+
value="recursive"
|
179 |
+
)
|
180 |
+
eval_chunk_size = gr.Radio(
|
181 |
+
["small", "medium"],
|
182 |
+
label="Chunk Size",
|
183 |
+
value="medium"
|
184 |
+
)
|
185 |
+
|
186 |
+
with gr.Row():
|
187 |
+
evaluate_btn = gr.Button("Run Evaluation")
|
188 |
+
evaluation_results = gr.DataFrame(label="Evaluation Results")
|
189 |
+
|
190 |
+
# Event handlers
|
191 |
+
def load_dataset_handler(dataset_name):
|
192 |
+
samples = evaluator.load_dataset(dataset_name)
|
193 |
+
return {
|
194 |
+
"dataset": dataset_name,
|
195 |
+
"num_samples": len(samples),
|
196 |
+
"sample_questions": [s["question"] for s in samples[:3]]
|
197 |
+
}
|
198 |
+
|
199 |
+
def run_evaluation(dataset_choice, splitting_strategy, chunk_size, vector_db, qa_chain):
|
200 |
+
if not evaluator.current_dataset:
|
201 |
+
return pd.DataFrame()
|
202 |
+
|
203 |
+
results = evaluator.evaluate_configuration(
|
204 |
+
vector_db=vector_db,
|
205 |
+
qa_chain=qa_chain,
|
206 |
+
splitting_strategy=splitting_strategy,
|
207 |
+
chunk_size=chunk_size
|
208 |
+
)
|
209 |
+
|
210 |
+
# Convert results to DataFrame
|
211 |
+
df = pd.DataFrame([results])
|
212 |
+
return df
|
213 |
+
|
214 |
+
# Connect event handlers
|
215 |
+
load_dataset_btn.click(
|
216 |
+
load_dataset_handler,
|
217 |
+
inputs=[dataset_choice],
|
218 |
+
outputs=[dataset_info]
|
219 |
+
)
|
220 |
+
|
221 |
+
evaluate_btn.click(
|
222 |
+
run_evaluation,
|
223 |
+
inputs=[
|
224 |
+
dataset_choice,
|
225 |
+
eval_splitting_strategy,
|
226 |
+
eval_chunk_size,
|
227 |
+
vector_db,
|
228 |
+
qa_chain
|
229 |
+
],
|
230 |
+
outputs=[evaluation_results]
|
231 |
+
)
|
232 |
+
|
233 |
+
qachain_btn.click(
|
234 |
+
initialize_llmchain, # Fixed function name here
|
235 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
236 |
+
outputs=[qa_chain, llm_progress]
|
237 |
+
).then(
|
238 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
239 |
+
inputs=None,
|
240 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
241 |
+
queue=False
|
242 |
+
)
|
243 |
+
|
244 |
+
msg.submit(conversation,
|
245 |
+
inputs=[qa_chain, msg, chatbot],
|
246 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
247 |
+
queue=False
|
248 |
+
)
|
249 |
+
|
250 |
+
submit_btn.click(conversation,
|
251 |
+
inputs=[qa_chain, msg, chatbot],
|
252 |
+
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
253 |
+
queue=False
|
254 |
+
)
|
255 |
+
|
256 |
+
clear_btn.click(
|
257 |
+
lambda: [None, "", 0, "", 0, "", 0],
|
258 |
+
inputs=None,
|
259 |
+
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
260 |
+
queue=False
|
261 |
+
)
|
262 |
+
demo.queue().launch(debug=True)
|
263 |
+
|
264 |
+
if __name__ == "__main__":
|
265 |
+
demo()
|