arjunanand13 commited on
Commit
e26ea16
1 Parent(s): e2cc20f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +265 -0
app.py ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from typing import List, Dict
4
+ import numpy as np
5
+ from datasets import load_dataset
6
+ from langchain.text_splitter import (
7
+ RecursiveCharacterTextSplitter,
8
+ CharacterTextSplitter,
9
+ TokenTextSplitter
10
+ )
11
+ from langchain_community.vectorstores import FAISS, Chroma
12
+ from langchain_community.document_loaders import PyPDFLoader
13
+ from langchain.chains import ConversationalRetrievalChain
14
+ from langchain_community.embeddings import HuggingFaceEmbeddings
15
+ from langchain_community.llms import HuggingFaceEndpoint
16
+ from langchain.memory import ConversationBufferMemory
17
+ from sentence_transformers import SentenceTransformer, util
18
+ import torch
19
+ from ragas import evaluate
20
+ from ragas.metrics import (
21
+ ContextRecall,
22
+ AnswerRelevancy,
23
+ Faithfulness,
24
+ ContextPrecision
25
+ )
26
+ import pandas as pd
27
+
28
+ # Constants and configurations
29
+ CHUNK_SIZES = {
30
+ "small": {"recursive": 512, "fixed": 512, "token": 256},
31
+ "medium": {"recursive": 1024, "fixed": 1024, "token": 512}
32
+ }
33
+
34
+ class RAGEvaluator:
35
+ def __init__(self):
36
+ self.datasets = {
37
+ "squad": "squad_v2",
38
+ "msmarco": "ms_marco"
39
+ }
40
+ self.current_dataset = None
41
+ self.test_samples = []
42
+
43
+ def load_dataset(self, dataset_name: str, num_samples: int = 50):
44
+ if dataset_name == "squad":
45
+ dataset = load_dataset("squad_v2", split="validation")
46
+ samples = dataset.select(range(num_samples))
47
+ self.test_samples = [
48
+ {
49
+ "question": sample["question"],
50
+ "ground_truth": sample["answers"]["text"][0] if sample["answers"]["text"] else "",
51
+ "context": sample["context"]
52
+ }
53
+ for sample in samples
54
+ if sample["answers"]["text"] # Filter out samples without answers
55
+ ]
56
+ elif dataset_name == "msmarco":
57
+ dataset = load_dataset("ms_marco", "v2.1", split="train")
58
+ samples = dataset.select(range(num_samples))
59
+ self.test_samples = [
60
+ {
61
+ "question": sample["query"],
62
+ "ground_truth": sample["answers"][0] if sample["answers"] else "",
63
+ "context": sample["passages"]["passage_text"][0]
64
+ }
65
+ for sample in samples
66
+ if sample["answers"] # Filter out samples without answers
67
+ ]
68
+ self.current_dataset = dataset_name
69
+ return self.test_samples
70
+
71
+ def evaluate_configuration(self,
72
+ vector_db,
73
+ qa_chain,
74
+ splitting_strategy: str,
75
+ chunk_size: str) -> Dict:
76
+ if not self.test_samples:
77
+ return {"error": "No dataset loaded"}
78
+
79
+ results = []
80
+ for sample in self.test_samples:
81
+ response = qa_chain.invoke({
82
+ "question": sample["question"],
83
+ "chat_history": []
84
+ })
85
+
86
+ results.append({
87
+ "question": sample["question"],
88
+ "answer": response["answer"],
89
+ "contexts": [doc.page_content for doc in response["source_documents"]],
90
+ "ground_truths": [sample["ground_truth"]]
91
+ })
92
+
93
+ # Convert to RAGAS dataset format
94
+ eval_dataset = Dataset.from_list(results)
95
+
96
+ # Calculate RAGAS metrics
97
+ metrics = [
98
+ ContextRecall(),
99
+ AnswerRelevancy(),
100
+ Faithfulness(),
101
+ ContextPrecision()
102
+ ]
103
+
104
+ scores = evaluate(
105
+ eval_dataset,
106
+ metrics=metrics
107
+ )
108
+
109
+ return {
110
+ "configuration": f"{splitting_strategy}_{chunk_size}",
111
+ "context_recall": float(scores['context_recall']),
112
+ "answer_relevancy": float(scores['answer_relevancy']),
113
+ "faithfulness": float(scores['faithfulness']),
114
+ "context_precision": float(scores['context_precision']),
115
+ "average_score": float(np.mean([
116
+ scores['context_recall'],
117
+ scores['answer_relevancy'],
118
+ scores['faithfulness'],
119
+ scores['context_precision']
120
+ ]))
121
+ }
122
+
123
+ def demo():
124
+ evaluator = RAGEvaluator()
125
+
126
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
127
+ vector_db = gr.State()
128
+ qa_chain = gr.State()
129
+
130
+ gr.HTML("<center><h1>Enhanced RAG PDF Chatbot with Evaluation</h1></center>")
131
+
132
+ with gr.Tabs():
133
+ # Custom PDF Tab
134
+ with gr.Tab("Custom PDF Chat"):
135
+ # Your existing UI components here
136
+ with gr.Row():
137
+ with gr.Column(scale=86):
138
+ gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
139
+ with gr.Row():
140
+ document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
141
+
142
+ with gr.Row():
143
+ splitting_strategy = gr.Radio(
144
+ ["recursive", "fixed", "token"],
145
+ label="Text Splitting Strategy",
146
+ value="recursive"
147
+ )
148
+ db_choice = gr.Dropdown(
149
+ ["faiss", "chroma"],
150
+ label="Vector Database",
151
+ value="faiss"
152
+ )
153
+ chunk_size = gr.Radio(
154
+ ["small", "medium"],
155
+ label="Chunk Size",
156
+ value="medium"
157
+ )
158
+
159
+ # Rest of your existing UI components...
160
+
161
+ # Evaluation Tab
162
+ with gr.Tab("RAG Evaluation"):
163
+ with gr.Row():
164
+ dataset_choice = gr.Dropdown(
165
+ choices=list(evaluator.datasets.keys()),
166
+ label="Select Evaluation Dataset",
167
+ value="squad"
168
+ )
169
+ load_dataset_btn = gr.Button("Load Dataset")
170
+
171
+ with gr.Row():
172
+ dataset_info = gr.JSON(label="Dataset Information")
173
+
174
+ with gr.Row():
175
+ eval_splitting_strategy = gr.Radio(
176
+ ["recursive", "fixed", "token"],
177
+ label="Text Splitting Strategy",
178
+ value="recursive"
179
+ )
180
+ eval_chunk_size = gr.Radio(
181
+ ["small", "medium"],
182
+ label="Chunk Size",
183
+ value="medium"
184
+ )
185
+
186
+ with gr.Row():
187
+ evaluate_btn = gr.Button("Run Evaluation")
188
+ evaluation_results = gr.DataFrame(label="Evaluation Results")
189
+
190
+ # Event handlers
191
+ def load_dataset_handler(dataset_name):
192
+ samples = evaluator.load_dataset(dataset_name)
193
+ return {
194
+ "dataset": dataset_name,
195
+ "num_samples": len(samples),
196
+ "sample_questions": [s["question"] for s in samples[:3]]
197
+ }
198
+
199
+ def run_evaluation(dataset_choice, splitting_strategy, chunk_size, vector_db, qa_chain):
200
+ if not evaluator.current_dataset:
201
+ return pd.DataFrame()
202
+
203
+ results = evaluator.evaluate_configuration(
204
+ vector_db=vector_db,
205
+ qa_chain=qa_chain,
206
+ splitting_strategy=splitting_strategy,
207
+ chunk_size=chunk_size
208
+ )
209
+
210
+ # Convert results to DataFrame
211
+ df = pd.DataFrame([results])
212
+ return df
213
+
214
+ # Connect event handlers
215
+ load_dataset_btn.click(
216
+ load_dataset_handler,
217
+ inputs=[dataset_choice],
218
+ outputs=[dataset_info]
219
+ )
220
+
221
+ evaluate_btn.click(
222
+ run_evaluation,
223
+ inputs=[
224
+ dataset_choice,
225
+ eval_splitting_strategy,
226
+ eval_chunk_size,
227
+ vector_db,
228
+ qa_chain
229
+ ],
230
+ outputs=[evaluation_results]
231
+ )
232
+
233
+ qachain_btn.click(
234
+ initialize_llmchain, # Fixed function name here
235
+ inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
236
+ outputs=[qa_chain, llm_progress]
237
+ ).then(
238
+ lambda: [None, "", 0, "", 0, "", 0],
239
+ inputs=None,
240
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
241
+ queue=False
242
+ )
243
+
244
+ msg.submit(conversation,
245
+ inputs=[qa_chain, msg, chatbot],
246
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
247
+ queue=False
248
+ )
249
+
250
+ submit_btn.click(conversation,
251
+ inputs=[qa_chain, msg, chatbot],
252
+ outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
253
+ queue=False
254
+ )
255
+
256
+ clear_btn.click(
257
+ lambda: [None, "", 0, "", 0, "", 0],
258
+ inputs=None,
259
+ outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
260
+ queue=False
261
+ )
262
+ demo.queue().launch(debug=True)
263
+
264
+ if __name__ == "__main__":
265
+ demo()