arjunanand13 commited on
Commit
e71e68a
·
verified ·
1 Parent(s): 05fb03d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +306 -0
app.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from typing import List, Dict
4
+ from langchain.text_splitter import (
5
+ RecursiveCharacterTextSplitter,
6
+ CharacterTextSplitter,
7
+ TokenTextSplitter
8
+ )
9
+ from langchain_community.vectorstores import FAISS, Chroma, Qdrant
10
+ from langchain_community.document_loaders import PyPDFLoader
11
+ from langchain.chains import ConversationalRetrievalChain
12
+ from langchain_community.embeddings import HuggingFaceEmbeddings
13
+ from langchain_huggingface import HuggingFaceEndpoint
14
+ from langchain.memory import ConversationBufferMemory
15
+
16
+ list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]
17
+ list_llm_simple = [os.path.basename(llm) for llm in list_llm]
18
+ api_token = os.getenv("HF_TOKEN")
19
+
20
+ CHUNK_SIZES = {
21
+ "small": {"recursive": 512, "fixed": 512, "token": 256},
22
+ "medium": {"recursive": 1024, "fixed": 1024, "token": 512}
23
+ }
24
+
25
+ def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64):
26
+ splitters = {
27
+ "recursive": RecursiveCharacterTextSplitter(
28
+ chunk_size=chunk_size,
29
+ chunk_overlap=chunk_overlap
30
+ ),
31
+ "fixed": CharacterTextSplitter(
32
+ chunk_size=chunk_size,
33
+ chunk_overlap=chunk_overlap
34
+ ),
35
+ "token": TokenTextSplitter(
36
+ chunk_size=chunk_size,
37
+ chunk_overlap=chunk_overlap
38
+ )
39
+ }
40
+ return splitters.get(strategy)
41
+
42
+ def load_doc(list_file_path: List[str], splitting_strategy: str, chunk_size: str):
43
+ chunk_size_value = CHUNK_SIZES[chunk_size][splitting_strategy]
44
+ loaders = [PyPDFLoader(x) for x in list_file_path]
45
+ pages = []
46
+ for loader in loaders:
47
+ pages.extend(loader.load())
48
+
49
+ text_splitter = get_text_splitter(splitting_strategy, chunk_size_value)
50
+ doc_splits = text_splitter.split_documents(pages)
51
+ return doc_splits
52
+
53
+ def create_db(splits, db_choice: str = "faiss"):
54
+ embeddings = HuggingFaceEmbeddings()
55
+ db_creators = {
56
+ "faiss": lambda: FAISS.from_documents(splits, embeddings),
57
+ "chroma": lambda: Chroma.from_documents(splits, embeddings),
58
+ "qdrant": lambda: Qdrant.from_documents(
59
+ splits,
60
+ embeddings,
61
+ location=":memory:",
62
+ collection_name="pdf_docs"
63
+ )
64
+ }
65
+ return db_creators[db_choice]()
66
+
67
+ def initialize_database(list_file_obj, splitting_strategy, chunk_size, db_choice, progress=gr.Progress()):
68
+ """Initialize vector database with error handling"""
69
+ try:
70
+ if not list_file_obj:
71
+ return None, "No files uploaded. Please upload PDF documents first."
72
+
73
+ list_file_path = [x.name for x in list_file_obj if x is not None]
74
+ if not list_file_path:
75
+ return None, "No valid files found. Please upload PDF documents."
76
+
77
+ doc_splits = load_doc(list_file_path, splitting_strategy, chunk_size)
78
+ if not doc_splits:
79
+ return None, "No content extracted from documents."
80
+
81
+ vector_db = create_db(doc_splits, db_choice)
82
+ return vector_db, f"Database created successfully using {splitting_strategy} splitting and {db_choice} vector database!"
83
+
84
+ except Exception as e:
85
+ return None, f"Error creating database: {str(e)}"
86
+
87
+ def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
88
+ """Initialize LLM chain with error handling"""
89
+ try:
90
+ if vector_db is None:
91
+ return None, "Please create vector database first."
92
+
93
+ llm_model = list_llm[llm_choice]
94
+
95
+ llm = HuggingFaceEndpoint(
96
+ repo_id=llm_model,
97
+ huggingfacehub_api_token=api_token,
98
+ temperature=temperature,
99
+ max_new_tokens=max_tokens,
100
+ top_k=top_k
101
+ )
102
+
103
+ memory = ConversationBufferMemory(
104
+ memory_key="chat_history",
105
+ output_key='answer',
106
+ return_messages=True
107
+ )
108
+
109
+ retriever = vector_db.as_retriever()
110
+ qa_chain = ConversationalRetrievalChain.from_llm(
111
+ llm,
112
+ retriever=retriever,
113
+ memory=memory,
114
+ return_source_documents=True
115
+ )
116
+ return qa_chain, "LLM initialized successfully!"
117
+
118
+ except Exception as e:
119
+ return None, f"Error initializing LLM: {str(e)}"
120
+
121
+ def conversation(qa_chain, message, history):
122
+ """Conversation function returning all required outputs"""
123
+ response = qa_chain.invoke({
124
+ "question": message,
125
+ "chat_history": [(hist[0], hist[1]) for hist in history]
126
+ })
127
+
128
+ response_answer = response["answer"]
129
+ if "Helpful Answer:" in response_answer:
130
+ response_answer = response_answer.split("Helpful Answer:")[-1]
131
+
132
+ sources = response["source_documents"][:3]
133
+ source_contents = []
134
+ source_pages = []
135
+
136
+ for source in sources:
137
+ source_contents.append(source.page_content.strip())
138
+ source_pages.append(source.metadata.get("page", 0) + 1)
139
+
140
+ while len(source_contents) < 3:
141
+ source_contents.append("")
142
+ source_pages.append(0)
143
+
144
+ return (
145
+ qa_chain,
146
+ gr.update(value=""),
147
+ history + [(message, response_answer)],
148
+ source_contents[0],
149
+ source_pages[0],
150
+ source_contents[1],
151
+ source_pages[1],
152
+ source_contents[2],
153
+ source_pages[2]
154
+ )
155
+
156
+ def demo():
157
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo:
158
+ vector_db = gr.State()
159
+ qa_chain = gr.State()
160
+
161
+ gr.HTML("<center><h1>RAG PDF Chatbot</h1></center>")
162
+
163
+ with gr.Column(scale=86):
164
+ gr.Markdown("<b>Step 1 - Configure and Initialize RAG Pipeline</b>")
165
+ with gr.Row():
166
+ document = gr.Files(
167
+ height=300,
168
+ file_count="multiple",
169
+ file_types=["pdf"],
170
+ interactive=True,
171
+ label="Upload PDF documents"
172
+ )
173
+
174
+ with gr.Row():
175
+ splitting_strategy = gr.Radio(
176
+ ["recursive", "fixed", "token"],
177
+ label="Text Splitting Strategy",
178
+ value="recursive"
179
+ )
180
+ db_choice = gr.Radio(
181
+ ["faiss", "chroma", "qdrant"],
182
+ label="Vector Database",
183
+ value="faiss"
184
+ )
185
+ chunk_size = gr.Radio(
186
+ ["small", "medium"],
187
+ label="Chunk Size",
188
+ value="medium"
189
+ )
190
+
191
+ with gr.Row():
192
+ db_btn = gr.Button("Create vector database")
193
+ db_progress = gr.Textbox(
194
+ value="Not initialized",
195
+ show_label=False
196
+ )
197
+
198
+ gr.Markdown("<b>Step 2 - Configure LLM</b>")
199
+ with gr.Row():
200
+ llm_choice = gr.Radio(
201
+ list_llm_simple,
202
+ label="Available LLMs",
203
+ value=list_llm_simple[0],
204
+ type="index"
205
+ )
206
+
207
+ with gr.Row():
208
+ with gr.Accordion("LLM Parameters", open=False):
209
+ temperature = gr.Slider(
210
+ minimum=0.01,
211
+ maximum=1.0,
212
+ value=0.5,
213
+ step=0.1,
214
+ label="Temperature"
215
+ )
216
+ max_tokens = gr.Slider(
217
+ minimum=128,
218
+ maximum=4096,
219
+ value=2048,
220
+ step=128,
221
+ label="Max Tokens"
222
+ )
223
+ top_k = gr.Slider(
224
+ minimum=1,
225
+ maximum=10,
226
+ value=3,
227
+ step=1,
228
+ label="Top K"
229
+ )
230
+
231
+ with gr.Row():
232
+ init_llm_btn = gr.Button("Initialize LLM")
233
+ llm_progress = gr.Textbox(
234
+ value="Not initialized",
235
+ show_label=False
236
+ )
237
+
238
+ with gr.Column(scale=200):
239
+ gr.Markdown("<b>Step 3 - Chat with Documents</b>")
240
+ chatbot = gr.Chatbot(height=505)
241
+
242
+ with gr.Accordion("Source References", open=False):
243
+ with gr.Row():
244
+ source1 = gr.Textbox(label="Source 1", lines=2)
245
+ page1 = gr.Number(label="Page")
246
+ with gr.Row():
247
+ source2 = gr.Textbox(label="Source 2", lines=2)
248
+ page2 = gr.Number(label="Page")
249
+ with gr.Row():
250
+ source3 = gr.Textbox(label="Source 3", lines=2)
251
+ page3 = gr.Number(label="Page")
252
+
253
+ with gr.Row():
254
+ msg = gr.Textbox(
255
+ placeholder="Ask a question",
256
+ show_label=False
257
+ )
258
+ with gr.Row():
259
+ submit_btn = gr.Button("Submit")
260
+ clear_btn = gr.ClearButton(
261
+ [msg, chatbot],
262
+ value="Clear Chat"
263
+ )
264
+
265
+ # Event handlers
266
+ db_btn.click(
267
+ initialize_database,
268
+ inputs=[document, splitting_strategy, chunk_size, db_choice],
269
+ outputs=[vector_db, db_progress]
270
+ ).then(
271
+ lambda x: gr.update(interactive=True) if x[0] is not None else gr.update(interactive=False),
272
+ inputs=[vector_db],
273
+ outputs=[init_llm_btn]
274
+ )
275
+
276
+ init_llm_btn.click(
277
+ initialize_llmchain,
278
+ inputs=[llm_choice, temperature, max_tokens, top_k, vector_db],
279
+ outputs=[qa_chain, llm_progress]
280
+ ).then(
281
+ lambda x: gr.update(interactive=True) if x[0] is not None else gr.update(interactive=False),
282
+ inputs=[qa_chain],
283
+ outputs=[msg]
284
+ )
285
+
286
+ msg.submit(
287
+ conversation,
288
+ inputs=[qa_chain, msg, chatbot],
289
+ outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
290
+ )
291
+
292
+ submit_btn.click(
293
+ conversation,
294
+ inputs=[qa_chain, msg, chatbot],
295
+ outputs=[qa_chain, msg, chatbot, source1, page1, source2, page2, source3, page3]
296
+ )
297
+
298
+ clear_btn.click(
299
+ lambda: [None, "", 0, "", 0, "", 0],
300
+ outputs=[chatbot, source1, page1, source2, page2, source3, page3]
301
+ )
302
+
303
+ demo.queue().launch(debug=True)
304
+
305
+ if __name__ == "__main__":
306
+ demo()