import gradio as gr import os from typing import List, Dict from ragas import evaluate from ragas.metrics import ( answer_relevancy, faithfulness, context_recall, context_precision, answer_correctness, answer_similarity ) from datasets import load_dataset from langchain.text_splitter import ( RecursiveCharacterTextSplitter, CharacterTextSplitter, SemanticTextSplitter ) from langchain_community.vectorstores import FAISS, Chroma, Qdrant from langchain_community.document_loaders import PyPDFLoader from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain.memory import ConversationBufferMemory import torch # Constants list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] list_llm_simple = [os.path.basename(llm) for llm in list_llm] api_token = os.getenv("HF_TOKEN") # Text splitting strategies def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64): splitters = { "recursive": RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ), "fixed": CharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ), "semantic": SemanticTextSplitter( embedding_function=HuggingFaceEmbeddings().embed_query, chunk_size=chunk_size, chunk_overlap=chunk_overlap ) } return splitters.get(strategy) # Load and split PDF document def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = get_text_splitter(splitting_strategy) doc_splits = text_splitter.split_documents(pages) return doc_splits # Vector database creation functions def create_faiss_db(splits, embeddings): return FAISS.from_documents(splits, embeddings) def create_chroma_db(splits, embeddings): return Chroma.from_documents(splits, embeddings) def create_qdrant_db(splits, embeddings): return Qdrant.from_documents( splits, embeddings, location=":memory:", collection_name="pdf_docs" ) def create_db(splits, db_choice: str = "faiss"): embeddings = HuggingFaceEmbeddings() db_creators = { "faiss": create_faiss_db, "chroma": create_chroma_db, "qdrant": create_qdrant_db } return db_creators[db_choice](splits, embeddings) # Updated evaluation functions def load_evaluation_dataset(): # Load example dataset from RAGAS dataset = load_dataset("explodinggradients/fiqa", split="test") return dataset def prepare_ragas_dataset(qa_chain, dataset): # Sample a few examples for evaluation eval_samples = dataset.select(range(5)) ragas_dataset = [] for sample in eval_samples: question = sample["question"] # Get response from the chain response = qa_chain.invoke({ "question": question, "chat_history": [] }) ragas_dataset.append({ "question": question, "answer": response["answer"], "contexts": [doc.page_content for doc in response["source_documents"]], "ground_truth": sample["answer"] }) return ragas_dataset def evaluate_rag_pipeline(qa_chain, dataset): ragas_dataset = prepare_ragas_dataset(qa_chain, dataset) # Run RAGAS evaluation results = evaluate( ragas_dataset, metrics=[ context_precision, faithfulness, answer_relevancy, context_recall, answer_correctness, answer_similarity ] ) # Convert results to a dictionary return { "context_precision": float(results["context_precision"]), "faithfulness": float(results["faithfulness"]), "answer_relevancy": float(results["answer_relevancy"]), "context_recall": float(results["context_recall"]), "answer_correctness": float(results["answer_correctness"]), "answer_similarity": float(results["answer_similarity"]) } # Initialize langchain LLM chain def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct": llm = HuggingFaceEndpoint( repo_id=llm_model, huggingfacehub_api_token=api_token, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) else: llm = HuggingFaceEndpoint( huggingfacehub_api_token=api_token, repo_id=llm_model, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, ) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) return qa_chain # Initialize database with chunking strategy and vector DB choice def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] doc_splits = load_doc(list_file_path, splitting_strategy) vector_db = create_db(doc_splits, db_choice) return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!" # Formatting chat history def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history # Conversation function def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain.invoke({ "question": message, "chat_history": formatted_chat_history }) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def demo(): with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo: vector_db = gr.State() qa_chain = gr.State() gr.HTML("