import gradio as gr import os from typing import List, Dict import numpy as np from datasets import load_dataset from langchain.text_splitter import ( RecursiveCharacterTextSplitter, CharacterTextSplitter, TokenTextSplitter ) from langchain_community.vectorstores import FAISS, Chroma, Qdrant from langchain_community.document_loaders import PyPDFLoader from langchain.chains import ConversationalRetrievalChain from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.llms import HuggingFaceEndpoint from langchain.memory import ConversationBufferMemory from sentence_transformers import SentenceTransformer, util import torch # Constants and setup list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] list_llm_simple = [os.path.basename(llm) for llm in list_llm] api_token = os.getenv("HF_TOKEN") # Initialize sentence transformer for evaluation sentence_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') # Text splitting strategies def get_text_splitter(strategy: str, chunk_size: int = 1024, chunk_overlap: int = 64): splitters = { "recursive": RecursiveCharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ), "fixed": CharacterTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ), "token": TokenTextSplitter( chunk_size=chunk_size, chunk_overlap=chunk_overlap ) } return splitters.get(strategy) # Custom evaluation metrics def calculate_semantic_similarity(text1: str, text2: str) -> float: embeddings1 = sentence_model.encode([text1], convert_to_tensor=True) embeddings2 = sentence_model.encode([text2], convert_to_tensor=True) similarity = util.pytorch_cos_sim(embeddings1, embeddings2) return float(similarity[0][0]) def evaluate_response(question: str, answer: str, ground_truth: str, contexts: List[str]) -> Dict[str, float]: # Answer similarity with ground truth answer_similarity = calculate_semantic_similarity(answer, ground_truth) # Context relevance - average similarity between question and contexts context_scores = [calculate_semantic_similarity(question, ctx) for ctx in contexts] context_relevance = np.mean(context_scores) # Answer relevance - similarity between question and answer answer_relevance = calculate_semantic_similarity(question, answer) return { "answer_similarity": answer_similarity, "context_relevance": context_relevance, "answer_relevance": answer_relevance, "average_score": np.mean([answer_similarity, context_relevance, answer_relevance]) } # Load and split PDF document def load_doc(list_file_path: List[str], splitting_strategy: str = "recursive"): loaders = [PyPDFLoader(x) for x in list_file_path] pages = [] for loader in loaders: pages.extend(loader.load()) text_splitter = get_text_splitter(splitting_strategy) doc_splits = text_splitter.split_documents(pages) return doc_splits # Vector database creation functions def create_faiss_db(splits, embeddings): return FAISS.from_documents(splits, embeddings) def create_chroma_db(splits, embeddings): return Chroma.from_documents(splits, embeddings) def create_qdrant_db(splits, embeddings): return Qdrant.from_documents( splits, embeddings, location=":memory:", collection_name="pdf_docs" ) def create_db(splits, db_choice: str = "faiss"): embeddings = HuggingFaceEmbeddings() db_creators = { "faiss": create_faiss_db, "chroma": create_chroma_db, "qdrant": create_qdrant_db } return db_creators[db_choice](splits, embeddings) def load_evaluation_dataset(): dataset = load_dataset("explodinggradients/fiqa", split="test", trust_remote_code=True) return dataset def evaluate_rag_pipeline(qa_chain, dataset): # Sample a few examples for evaluation eval_samples = dataset.select(range(5)) results = [] for sample in eval_samples: question = sample["question"] # Get response from the chain response = qa_chain.invoke({ "question": question, "chat_history": [] }) # Evaluate response eval_result = evaluate_response( question=question, answer=response["answer"], ground_truth=sample["answer"], contexts=[doc.page_content for doc in response["source_documents"]] ) results.append(eval_result) # Calculate average scores across all samples avg_results = { metric: float(np.mean([r[metric] for r in results])) for metric in results[0].keys() } return avg_results # Initialize langchain LLM chain def initialize_llmchain(llm_choice, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): # Get the full model name from the index llm_model = list_llm[llm_choice] llm = HuggingFaceEndpoint( repo_id=llm_model, huggingfacehub_api_token=api_token, temperature=temperature, max_new_tokens=max_tokens, top_k=top_k, model=llm_model # Add model parameter ) memory = ConversationBufferMemory( memory_key="chat_history", output_key='answer', return_messages=True ) retriever = vector_db.as_retriever() qa_chain = ConversationalRetrievalChain.from_llm( llm, retriever=retriever, chain_type="stuff", memory=memory, return_source_documents=True, verbose=False, ) return qa_chain, "LLM initialized successfully!" def initialize_database(list_file_obj, splitting_strategy, db_choice, progress=gr.Progress()): list_file_path = [x.name for x in list_file_obj if x is not None] doc_splits = load_doc(list_file_path, splitting_strategy) vector_db = create_db(doc_splits, db_choice) return vector_db, f"Database created using {splitting_strategy} splitting and {db_choice} vector database!" def format_chat_history(message, chat_history): formatted_chat_history = [] for user_message, bot_message in chat_history: formatted_chat_history.append(f"User: {user_message}") formatted_chat_history.append(f"Assistant: {bot_message}") return formatted_chat_history def conversation(qa_chain, message, history): formatted_chat_history = format_chat_history(message, history) response = qa_chain.invoke({ "question": message, "chat_history": formatted_chat_history }) response_answer = response["answer"] if response_answer.find("Helpful Answer:") != -1: response_answer = response_answer.split("Helpful Answer:")[-1] response_sources = response["source_documents"] response_source1 = response_sources[0].page_content.strip() response_source2 = response_sources[1].page_content.strip() response_source3 = response_sources[2].page_content.strip() response_source1_page = response_sources[0].metadata["page"] + 1 response_source2_page = response_sources[1].metadata["page"] + 1 response_source3_page = response_sources[2].metadata["page"] + 1 new_history = history + [(message, response_answer)] return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page def demo(): with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue="sky")) as demo: vector_db = gr.State() qa_chain = gr.State() gr.HTML("