Spaces:
Sleeping
Sleeping
File size: 9,081 Bytes
af95c2b 1a9f50f af95c2b aa82c6e af95c2b fcd431c af95c2b 1474ebc af95c2b c5772bd 4a93e67 af95c2b 658bb1c af95c2b 8dcb634 af95c2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import gradio as gr
from PIL import Image, ImageFilter
import os
from txt2sql_code3 import SQLPromptModel
from qa_bot_chatgpt import QAInfer
from gradio import Button
import time
import google.generativeai as genai
image = Image.open(os.path.join(os.path.abspath(''), "house_excel_sheet.png"))
def image_display(steps=0):
return image
query = None
rows = None
columns = None
user_choices = None
data = [
[1, "Buckingham Palace", 27, 34, 0.12, "London", "United Kingdom", 601, 920, 105000, "Buckingham_palace.pdf"],
[2, "White House", 355, 67, 0.08, "Washington D.C.", "United States", 601, 1527, 80000, "White_House.pdf"],
[3, "Taj Mahal Palace", 455, 76, 0.15, "Mumbai", "India", 795, 748, 67000, "Taj_Mahal_palace.pdf"],
[4, "Versailles Palace", 455, 45, 0.1, "Versailles", "France", 731, 1800, 145000, "Palace_of_Versailes.pdf"],
[5, "Villa Leopolda", 223, 21, 0.05, "Villefranche-sur-Mer", "France", 680, 6886, 65000, "Villa_Leopolda.pdf"],
[6, "Antilia", 455, 70, 0.46, "Mumbai", "India", 612, 2520, 179000, "Antilia.pdf"],
[7, "The Biltmore Estate", 544, 93, 0.2, "Asheville", "United States", 639, 2040, 50000, "Biltmore_Estate.pdf"],
[8, "Hearst Castle", 303, 57, 0.08, "San Simeon", "United States", 731, 1050, 71600, "Hearst_castle.pdf"],
[9, "Villa Les Cèdres", 489, 88, 0.09, "Saint-Jean-Cap-Ferrat", "France", 730, 1092, 100000, "Villa_Les_Cedres.pdf"],
[10, "Istana Nurul Iman", 350, 34, 7.46, "Bandar Seri Begawan", "Brunei", 670, 5403, 300000, "Istana_Nurul_Iman.pdf"]
]
choices = [item[1] for item in data]
def execute_sql_query(input_prompt):
global query, rows, columns, user_choices
model_dir = "multi_table_demo/checkpoint-2600"
database = r"sql_pdf.db"
sql_model = SQLPromptModel(model_dir, database)
user_prompt = "Give complete details of properties in India"
for _ in range(3): # Retry logic, try 3 times
try:
table_schema = sql_model.fetch_table_schema("sql_pdf")
if table_schema:
if input_prompt.strip():
# query = sql_model.text2sql(table_schema, user_prompt, input_prompt)
# query = sql_model.text2sql_chatgpt(table_schema, user_prompt, input_prompt)
query = sql_model.text2sql_gemini(table_schema, user_prompt, input_prompt)
else:
# query = sql_model.text2sql(table_schema, user_prompt, user_prompt)
# query = sql_model.text2sql_chatgpt(table_schema, user_prompt, user_prompt)
query = sql_model.text2sql_gemini(table_schema, user_prompt, user_prompt)
rows, columns = sql_model.execute_query(query)
print(rows)
user_choices = []
for item in rows:
if isinstance(item[0], str):
user_choices.append(item[0])
else:
for val in item:
if isinstance(val, str):
user_choices.append(val)
break
return rows
else:
print("Table schema not found.")
return None
except Exception as e:
print(f"An error occurred: {e}")
print("Retrying...")
time.sleep(1) # Wait for 1 second before retrying
return None # Return None if all retries fail
# def qa_infer_interface(row,query_on_pdf):
# qa_infer=QAInfer()
# qa_infer.qa_infer(query,rows,columns)
user_choices = None
def update_choices(nothing):
print("callback called")
print("choices",choices)
print("user_choices",user_choices)
if user_choices:
examples = [[user_choices[0], "Structure of the property"], [user_choices[0], "Property History"], [user_choices[0], "How many floors does the property have"]]
return gr.Dropdown(choices=user_choices, label="Property Choice",info="List of all properties",interactive=True)#,examples
else:
return gr.Dropdown(choices=[], label="Property Choice",info="List of all properties",interactive=True)
def update_examples(nothing):
if user_choices:
examples = [[user_choices[0], "Structure of the property"], [user_choices[0], "Property History"], [user_choices[0], "How many floors does the property have"]]
return examples
else :
examples=[["","Structure of the property "],[ ""," Property History "] ,["", " How many floors does the property have"]],
def qa_infer_interface(property_choice, query_question):
qa_infer = QAInfer()
if not property_choice and user_choices:
property_choice = user_choices[0]
property_row = [row for row in data if row[1] == property_choice][0] # Find the row corresponding to the selected property
if not query_question:
query_question = "area"
retries = 3
while retries > 0:
try:
print(property_row)
# answer = qa_infer.qa_infer_interface(property_row, query_question) #-->chatgpt
answer = qa_infer.qa_infer_interface_gemini(property_row, query_question)
return answer
except Exception as e:
print(f"Error occurred while inferring QA: {e}")
retries -= 1
print("Failed to infer QA after 3 retries.")
return None
user_dropdown=gr.Dropdown(choices=[], label="Property Choice",info="List of all properties")
properties_text=gr.components.Textbox(lines=2,label="User Database Query",placeholder="Click on an query from 'examples' below or write your own query based on the database above. Default : 'Properties in India'")
interface_1_output=gr.Json(label="json")
stage2_examples=[["","Structure of the property "],[ ""," Property History "] ,["", " How many floors does the property have"]]
stage2_text=gr.components.Textbox(lines=2,label="Question on property",placeholder="Enter a question to know more about the properties , you can choose from one of the options below or write a own question Default: 'Area of the property'",)
stage2_output="text"
with gr.Blocks(title="House Excel Query") as demo:
gr.Markdown("# House Excel Query")
generated_image = image_display()
gr.Image(generated_image)
gr.Markdown("""### The database provided contains information about different properties, including their fundamental details. Additional specifics about each property are stored in associated PDF files, which are referenced in the "PDF" column. You have the capability to query this database using various criteria. When a query is initiated, the system generates SQL queries and extracts relevant rows from the database in the backend.
\n ### Once the properties are retrieved based on the query, you can utilize the user interface (UI) below to perform question answering (QA). Simply select a property from the list of returned properties and compose a question pertaining to that property. You will receive an answer based on the available information.""")
interface_1 = gr.Interface(
execute_sql_query,
inputs=properties_text,
# "textbox",
outputs=interface_1_output,
# live=True,
# cache_examples=["Give me all details of properties from India"],
examples=["Properties in France "," Properties greater than a acre","Properties with more than 400 bedrooms"],
)
# print(interface_1.input_components[0])
interface_2 = gr.Interface(
qa_infer_interface,
inputs=[user_dropdown,stage2_text],
# inputs=[gr.Dropdown.change(fn=update_choices),gr.components.Textbox(lines=2,label="Question on property",placeholder="Enter a question to know more about the properties")],
outputs=stage2_output,
# examples=stage2_examples,
# live=True,
# gr.Button("Next"),
# Button.click(next,value="Next"),
)
gr.Examples(["How many floors does the property have "," Total square feet of the property " ," Total area of the property"],inputs=stage2_text,outputs=stage2_output,fn=qa_infer_interface)
properties_text.change(update_choices,inputs=[properties_text],outputs=[user_dropdown])
interface_1_output.change(update_choices,inputs=[interface_1_output],outputs=[user_dropdown])
# user_dropdown.change(update_examples, inputs=[user_dropdown], outputs=[stage2_examples])
# properties_text.change(update_choices,inputs=[stage2_examples],outputs=[interface_2.examples])
# interface_1_output.change(update_choices,inputs=[stage2_examples],outputs=[interface_2.examples])
# user_dropdown.change(update_choices, inputs=[user_dropdown], outputs=[user_dropdown, interface_2])
# user_dropdown.change(fn=update_choices,inputs=[user_dropdown],outputs=[user_dropdown])
# with gr.Row():
# save_btn = gr.Button("Next")
# Button.click(next,value="Next",),
if __name__ == "__main__":
demo.launch(share=True)
## download pdf buttons
## upload pdf
## dynamic selection |