Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,31 +12,39 @@ genai_model = genai.GenerativeModel('gemini-pro')
|
|
12 |
|
13 |
class SQLPromptModel:
|
14 |
def __init__(self, database):
|
|
|
15 |
self.database = database
|
16 |
self.conn = sqlite3.connect(self.database)
|
17 |
|
18 |
def fetch_table_schema(self, table_name):
|
|
|
19 |
cursor = self.conn.cursor()
|
|
|
|
|
20 |
cursor.execute(f"PRAGMA table_info({table_name})")
|
21 |
schema = cursor.fetchall()
|
22 |
return schema if schema else None
|
23 |
|
24 |
def text2sql_gemini(self, schema, user_prompt, inp_prompt=None):
|
|
|
25 |
table_columns = ', '.join([f"{col[1]} {col[2]}" for col in schema])
|
26 |
|
|
|
27 |
prompt = f"""Below are SQL table schemas paired with instructions that describe a task.
|
28 |
Using valid SQLite, write a response that appropriately completes the request for the provided tables.
|
29 |
### Instruction: {user_prompt} ###
|
30 |
Input: CREATE TABLE sql_pdf({table_columns});
|
31 |
### Response: (Return only generated query based on user_prompt , nothing extra)"""
|
32 |
|
|
|
33 |
if inp_prompt is not None:
|
34 |
prompt = prompt.replace(user_prompt, inp_prompt + " ")
|
35 |
|
|
|
36 |
completion = genai_model.generate_content(prompt)
|
37 |
generated_query = completion.text
|
38 |
|
39 |
-
# Extract SQL query
|
40 |
start_index = generated_query.find("SELECT")
|
41 |
end_index = generated_query.find(";", start_index) + 1
|
42 |
|
@@ -45,74 +53,87 @@ class SQLPromptModel:
|
|
45 |
return generated_query
|
46 |
|
47 |
def execute_query(self, query):
|
|
|
48 |
cur = self.conn.cursor()
|
49 |
cur.execute(query)
|
|
|
50 |
columns = [header[0] for header in cur.description]
|
|
|
51 |
rows = [row for row in cur.fetchall()]
|
52 |
cur.close()
|
53 |
self.conn.commit()
|
54 |
return rows, columns
|
55 |
|
56 |
def execute_sql_query(input_prompt):
|
|
|
57 |
database = r"sql_pdf.db"
|
58 |
sql_model = SQLPromptModel(database)
|
59 |
|
|
|
60 |
user_prompt = "Give complete details of properties in India"
|
61 |
|
62 |
-
|
|
|
63 |
try:
|
|
|
64 |
table_schema = sql_model.fetch_table_schema("sql_pdf")
|
65 |
if table_schema:
|
|
|
66 |
if input_prompt.strip():
|
67 |
query = sql_model.text2sql_gemini(table_schema, user_prompt, input_prompt)
|
68 |
else:
|
69 |
query = sql_model.text2sql_gemini(table_schema, user_prompt, user_prompt)
|
70 |
|
71 |
rows, columns = sql_model.execute_query(query)
|
|
|
72 |
return {"Query": query, "Results": rows, "Columns": columns}
|
73 |
else:
|
74 |
return {"error": "Table schema not found."}
|
75 |
except Exception as e:
|
76 |
print(f"An error occurred: {e}")
|
77 |
-
time.sleep(1)
|
78 |
return {"error": "Failed to execute query after 3 retries."}
|
79 |
|
80 |
# Load the image
|
|
|
81 |
image = Image.open(os.path.join(os.path.abspath(''), "house_excel_sheet.png"))
|
82 |
|
83 |
-
# Create
|
84 |
with gr.Blocks(title="House Database Query") as demo:
|
|
|
85 |
gr.Markdown("# House Database Query System")
|
86 |
|
87 |
-
# Display
|
88 |
gr.Image(image)
|
89 |
|
|
|
90 |
gr.Markdown("""### The database contains information about different properties including their fundamental details.
|
91 |
You can query this database using natural language.""")
|
92 |
|
|
|
93 |
with gr.Row():
|
94 |
-
# Query input and output
|
95 |
query_input = gr.Textbox(
|
96 |
lines=2,
|
97 |
label="Database Query",
|
98 |
placeholder="Enter your query or choose from examples below. Default: 'Properties in India'"
|
99 |
)
|
100 |
|
|
|
101 |
with gr.Row():
|
102 |
-
# Add submit button
|
103 |
submit_btn = gr.Button("Submit Query", variant="primary")
|
104 |
|
|
|
105 |
with gr.Row():
|
106 |
query_output = gr.JSON(label="Query Results")
|
107 |
|
108 |
-
# Connect
|
109 |
submit_btn.click(
|
110 |
fn=execute_sql_query,
|
111 |
inputs=query_input,
|
112 |
outputs=query_output
|
113 |
)
|
114 |
|
115 |
-
# Example queries
|
116 |
gr.Examples(
|
117 |
examples=[
|
118 |
"Properties in France",
|
|
|
12 |
|
13 |
class SQLPromptModel:
|
14 |
def __init__(self, database):
|
15 |
+
# Initialize with database file path and create connection
|
16 |
self.database = database
|
17 |
self.conn = sqlite3.connect(self.database)
|
18 |
|
19 |
def fetch_table_schema(self, table_name):
|
20 |
+
# Get database table structure
|
21 |
cursor = self.conn.cursor()
|
22 |
+
# PRAGMA table_info returns:
|
23 |
+
# (id, name, type, notnull, default_value, primary_key)
|
24 |
cursor.execute(f"PRAGMA table_info({table_name})")
|
25 |
schema = cursor.fetchall()
|
26 |
return schema if schema else None
|
27 |
|
28 |
def text2sql_gemini(self, schema, user_prompt, inp_prompt=None):
|
29 |
+
# Convert table columns to string format
|
30 |
table_columns = ', '.join([f"{col[1]} {col[2]}" for col in schema])
|
31 |
|
32 |
+
# Create prompt for Gemini AI
|
33 |
prompt = f"""Below are SQL table schemas paired with instructions that describe a task.
|
34 |
Using valid SQLite, write a response that appropriately completes the request for the provided tables.
|
35 |
### Instruction: {user_prompt} ###
|
36 |
Input: CREATE TABLE sql_pdf({table_columns});
|
37 |
### Response: (Return only generated query based on user_prompt , nothing extra)"""
|
38 |
|
39 |
+
# Replace default prompt with user input if provided
|
40 |
if inp_prompt is not None:
|
41 |
prompt = prompt.replace(user_prompt, inp_prompt + " ")
|
42 |
|
43 |
+
# Get SQL query from Gemini
|
44 |
completion = genai_model.generate_content(prompt)
|
45 |
generated_query = completion.text
|
46 |
|
47 |
+
# Extract just the SQL query
|
48 |
start_index = generated_query.find("SELECT")
|
49 |
end_index = generated_query.find(";", start_index) + 1
|
50 |
|
|
|
53 |
return generated_query
|
54 |
|
55 |
def execute_query(self, query):
|
56 |
+
# Execute SQL query and get results
|
57 |
cur = self.conn.cursor()
|
58 |
cur.execute(query)
|
59 |
+
# Get column names
|
60 |
columns = [header[0] for header in cur.description]
|
61 |
+
# Get all rows
|
62 |
rows = [row for row in cur.fetchall()]
|
63 |
cur.close()
|
64 |
self.conn.commit()
|
65 |
return rows, columns
|
66 |
|
67 |
def execute_sql_query(input_prompt):
|
68 |
+
# Database file path
|
69 |
database = r"sql_pdf.db"
|
70 |
sql_model = SQLPromptModel(database)
|
71 |
|
72 |
+
# Default prompt if none provided
|
73 |
user_prompt = "Give complete details of properties in India"
|
74 |
|
75 |
+
# Try operation up to 3 times
|
76 |
+
for _ in range(3):
|
77 |
try:
|
78 |
+
# Get database structure
|
79 |
table_schema = sql_model.fetch_table_schema("sql_pdf")
|
80 |
if table_schema:
|
81 |
+
# Generate and execute query
|
82 |
if input_prompt.strip():
|
83 |
query = sql_model.text2sql_gemini(table_schema, user_prompt, input_prompt)
|
84 |
else:
|
85 |
query = sql_model.text2sql_gemini(table_schema, user_prompt, user_prompt)
|
86 |
|
87 |
rows, columns = sql_model.execute_query(query)
|
88 |
+
# Return formatted results
|
89 |
return {"Query": query, "Results": rows, "Columns": columns}
|
90 |
else:
|
91 |
return {"error": "Table schema not found."}
|
92 |
except Exception as e:
|
93 |
print(f"An error occurred: {e}")
|
94 |
+
time.sleep(1) # Wait 1 second before retry
|
95 |
return {"error": "Failed to execute query after 3 retries."}
|
96 |
|
97 |
# Load the image
|
98 |
+
# Load database schema image
|
99 |
image = Image.open(os.path.join(os.path.abspath(''), "house_excel_sheet.png"))
|
100 |
|
101 |
+
# Create web interface
|
102 |
with gr.Blocks(title="House Database Query") as demo:
|
103 |
+
# Header
|
104 |
gr.Markdown("# House Database Query System")
|
105 |
|
106 |
+
# Display database schema image
|
107 |
gr.Image(image)
|
108 |
|
109 |
+
# Description
|
110 |
gr.Markdown("""### The database contains information about different properties including their fundamental details.
|
111 |
You can query this database using natural language.""")
|
112 |
|
113 |
+
# Input section
|
114 |
with gr.Row():
|
|
|
115 |
query_input = gr.Textbox(
|
116 |
lines=2,
|
117 |
label="Database Query",
|
118 |
placeholder="Enter your query or choose from examples below. Default: 'Properties in India'"
|
119 |
)
|
120 |
|
121 |
+
# Submit button section
|
122 |
with gr.Row():
|
|
|
123 |
submit_btn = gr.Button("Submit Query", variant="primary")
|
124 |
|
125 |
+
# Results section
|
126 |
with gr.Row():
|
127 |
query_output = gr.JSON(label="Query Results")
|
128 |
|
129 |
+
# Connect button click to query function
|
130 |
submit_btn.click(
|
131 |
fn=execute_sql_query,
|
132 |
inputs=query_input,
|
133 |
outputs=query_output
|
134 |
)
|
135 |
|
136 |
+
# Example queries section
|
137 |
gr.Examples(
|
138 |
examples=[
|
139 |
"Properties in France",
|