arjunanand13 commited on
Commit
33c7ba5
·
verified ·
1 Parent(s): 44ddcbd

Create txt2sql_code3.py

Browse files
Files changed (1) hide show
  1. txt2sql_code3.py +158 -0
txt2sql_code3.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sqlite3
2
+ from sqlite3 import Error
3
+ from peft import AutoPeftModelForCausalLM
4
+ from transformers import AutoTokenizer, BitsAndBytesConfig
5
+ from transformers import AutoModelForCausalLM
6
+ from openai import OpenAI
7
+ import google.generativeai as genai
8
+
9
+ class SQLPromptModel:
10
+ def __init__(self, model_dir, database):
11
+ self.model_dir = model_dir
12
+ self.database = database
13
+ # peft_model_dir = self.model_dir
14
+ bnb_config = BitsAndBytesConfig(
15
+ load_in_4bit=True,
16
+ bnb_4bit_quant_type="nf4",
17
+ bnb_4bit_compute_dtype="float16",
18
+ bnb_4bit_use_double_quant=True,
19
+ )
20
+ # self.model = AutoPeftModelForCausalLM.from_pretrained(
21
+ # peft_model_dir, low_cpu_mem_usage=True, quantization_config=bnb_config
22
+ # )
23
+ # self.tokenizer = AutoTokenizer.from_pretrained(peft_model_dir)
24
+ # self.model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
25
+ # self.tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
26
+ self.chatgpt_client = OpenAI(api_key="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")
27
+ self.genai = genai
28
+ self.genai.configure(api_key="AIzaSyAFG94rVbm9eWepO5uPGsMha8XJ-sHbMdA")
29
+ self.genai_model = genai.GenerativeModel('gemini-pro')
30
+
31
+ self.conn = sqlite3.connect(self.database)
32
+
33
+ def fetch_table_schema(self, table_name):
34
+ """Fetch the schema of a table from the database."""
35
+ cursor = self.conn.cursor()
36
+ cursor.execute(f"PRAGMA table_info({table_name})")
37
+ schema = cursor.fetchall()
38
+ if schema:
39
+ return schema
40
+ else:
41
+ print(f"Table {table_name} does not exist or has no schema.")
42
+ return None
43
+
44
+ def text2sql(self, schema, user_prompt, inp_prompt=None):
45
+ """Generate SQL query based on user prompt and table schema.inp_prompt is for gradio purpose"""
46
+ table_columns = ', '.join([f"{col[1]} {col[2]}" for col in schema])
47
+
48
+ prompt = f"""Below are SQL table schemas paired with instructions that describe a task.
49
+ Using valid SQLite, write a response that appropriately completes the request for the provided tables.
50
+ ### Instruction: {user_prompt} ###
51
+ Input: CREATE TABLE sql_pdf({table_columns});
52
+ ### Response: (Return only query , nothing extra)"""
53
+
54
+ if inp_prompt is not None :
55
+ prompt = prompt.replace(user_prompt, inp_prompt + " ")
56
+ else:
57
+ inp_prompt = input("Press Enter for default question or Enter user prompt without newline characters: ").strip()
58
+ if inp_prompt:
59
+ prompt = prompt.replace(user_prompt, inp_prompt + " ")
60
+
61
+ """Text to SQL query generation"""
62
+ input_ids = self.tokenizer(
63
+ prompt, return_tensors="pt", truncation=True
64
+ ).input_ids.to(next(self.model.parameters()).device) # Move input to the device of the model
65
+ outputs = self.model.generate(input_ids=input_ids, max_new_tokens=200)
66
+ response = self.tokenizer.batch_decode(
67
+ outputs.detach().cpu().numpy(), skip_special_tokens=True
68
+ )[0][:]
69
+ return response[len(prompt):]
70
+
71
+ def text2sql_chatgpt(self, schema, user_prompt, inp_prompt=None):
72
+ table_columns = ', '.join([f"{col[1]} {col[2]}" for col in schema])
73
+
74
+ prompt = f"""Below are SQL table schemas paired with instructions that describe a task.
75
+ Using valid SQLite, write a response that appropriately completes the request for the provided tables.
76
+ ### Instruction: {user_prompt} ###
77
+ Input: CREATE TABLE sql_pdf({table_columns});
78
+ ### Response: (Return only generated query based on user_prompt , nothing extra)"""
79
+
80
+ if inp_prompt is not None :
81
+ prompt = prompt.replace(user_prompt, inp_prompt + " ")
82
+ else:
83
+ inp_prompt = input("Press Enter for default question or Enter user prompt without newline characters: ").strip()
84
+ if inp_prompt:
85
+ prompt = prompt.replace(user_prompt, inp_prompt + " ")
86
+ print(prompt)
87
+ completion = self.chatgpt_client.chat.completions.create(
88
+ model="gpt-3.5-turbo",
89
+ messages=[
90
+ {"role": "system", "content": "You are a expert SQL developer , generate a sql query and return it"},
91
+ {"role": "user", "content": prompt }
92
+ ]
93
+ )
94
+ return completion.choices[0].message.content
95
+
96
+ def text2sql_gemini(self, schema, user_prompt, inp_prompt=None):
97
+ table_columns = ', '.join([f"{col[1]} {col[2]}" for col in schema])
98
+
99
+ prompt = f"""Below are SQL table schemas paired with instructions that describe a task.
100
+ Using valid SQLite, write a response that appropriately completes the request for the provided tables.
101
+ ### Instruction: {user_prompt} ###
102
+ Input: CREATE TABLE sql_pdf({table_columns});
103
+ ### Response: (Return only generated query based on user_prompt , nothing extra)"""
104
+
105
+ if inp_prompt is not None :
106
+ prompt = prompt.replace(user_prompt, inp_prompt + " ")
107
+ else:
108
+ inp_prompt = input("Press Enter for default question or Enter user prompt without newline characters: ").strip()
109
+ if inp_prompt:
110
+ prompt = prompt.replace(user_prompt, inp_prompt + " ")
111
+ print(prompt)
112
+ completion = self.genai_model.generate_content(prompt)
113
+ generated_query=completion.text
114
+ start_index = generated_query.find("SELECT")
115
+ end_index = generated_query.find(";", start_index) + 1
116
+ print(start_index,end_index)
117
+ if start_index != -1 and end_index != 0:
118
+ return generated_query[start_index:end_index]
119
+ else:
120
+ return generated_query
121
+
122
+
123
+
124
+ def execute_query(self, query):
125
+ """Executing the query on database and returning rows and columns."""
126
+ print(query)
127
+ cur = self.conn.cursor()
128
+ cur.execute(query)
129
+ col = [header[0] for header in cur.description]
130
+ dash = "-" * sum(len(col_name) + 4 for col_name in col)
131
+ print(tuple(col))
132
+ print(dash)
133
+ rows = []
134
+ for member in cur:
135
+ rows.append(member)
136
+ print(member)
137
+ cur.close()
138
+ self.conn.commit()
139
+ # print(rows)
140
+ return rows, col
141
+
142
+ if __name__ == "__main__":
143
+ model_dir = "multi_table_demo/checkpoint-2600"
144
+ database = r"sql_pdf.db"
145
+ sql_model = SQLPromptModel(model_dir, database)
146
+ user_prompt = "Give complete details of properties in India"
147
+ while True:
148
+ table_schema = sql_model.fetch_table_schema("sql_pdf")
149
+ if table_schema:
150
+ # query = sql_model.text2sql(table_schema, user_prompt)
151
+ # query = sql_model.text2sql_chatgpt(table_schema, user_prompt)
152
+ query = sql_model.text2sql_gemini(table_schema, user_prompt)
153
+ print(query)
154
+ sql_model.execute_query(query)
155
+
156
+ sql_model.conn.close()
157
+
158
+