|
import streamlit as st |
|
import torch |
|
|
|
@st.cache |
|
def Model(): |
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
model_name = "google/bert_uncased_L-4_H-256_A-4" |
|
tokenizer = BertTokenizer.from_pretrained(model_name) |
|
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=8) |
|
bn_state_dict = torch.load('model_w.pt') |
|
model.load_state_dict(bn_state_dict) |
|
return model |
|
|
|
st.title('Классификация статьи по названию и описанию') |
|
|
|
|
|
title = st.text_area("Введите название статьи:") |
|
|
|
abstract = st.text_area("Введите описание статьи:") |
|
|
|
|
|
from transformers import pipeline |
|
pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") |
|
raw_predictions = pipe(title) |
|
|
|
|
|
st.markdown(f"{raw_predictions}") |
|
|
|
model = Model() |
|
st.markdown(f"{model}") |
|
|