|
import streamlit as st |
|
|
|
st.markdown("### Hello, world!") |
|
st.markdown("<img width=200px src='https://rozetked.me/images/uploads/dwoilp3BVjlE.jpg'>", unsafe_allow_html=True) |
|
|
|
|
|
text = st.text_area("TEXT HERE") |
|
|
|
|
|
from transformers import pipeline |
|
pipe = pipeline("ner", "Davlan/distilbert-base-multilingual-cased-ner-hrl") |
|
raw_predictions = pipe(text) |
|
|
|
|
|
st.markdown(f"{raw_predictions}") |
|
|
|
from transformers import BertTokenizer, BertForSequenceClassification |
|
model_name = "google/bert_uncased_L-4_H-256_A-4" |
|
tokenizer = BertTokenizer.from_pretrained(model_name) |
|
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=8) |
|
st.markdown(f"{model}") |
|
|