Spaces:
Sleeping
Sleeping
Arko Banik
commited on
Commit
·
7cf9102
1
Parent(s):
78a8cf5
change function calls, add inital attempt
Browse files
app.py
CHANGED
@@ -21,7 +21,7 @@ def cosine_similarity(x, y):
|
|
21 |
##################################
|
22 |
### TODO: Add code here ##########
|
23 |
##################################
|
24 |
-
|
25 |
|
26 |
|
27 |
# Function to Load Glove Embeddings
|
@@ -125,6 +125,18 @@ def averaged_glove_embeddings_gdrive(sentence, word_index_dict, embeddings, mode
|
|
125 |
##################################
|
126 |
##### TODO: Add code here ########
|
127 |
##################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
|
130 |
def get_category_embeddings(embeddings_metadata):
|
@@ -176,6 +188,9 @@ def get_sorted_cosine_similarity(embeddings_metadata):
|
|
176 |
##########################################
|
177 |
## TODO: Get embeddings for categories ###
|
178 |
##########################################
|
|
|
|
|
|
|
179 |
|
180 |
else:
|
181 |
model_name = embeddings_metadata["model_name"]
|
@@ -190,13 +205,33 @@ def get_sorted_cosine_similarity(embeddings_metadata):
|
|
190 |
else:
|
191 |
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search)
|
192 |
for index in range(len(categories)):
|
193 |
-
|
194 |
##########################################
|
195 |
# TODO: Compute cosine similarity between input sentence and categories
|
196 |
# TODO: Update category embeddings if category not found
|
197 |
##########################################
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
|
202 |
def plot_piechart(sorted_cosine_scores_items):
|
@@ -354,7 +389,8 @@ if st.session_state.text_search:
|
|
354 |
}
|
355 |
with st.spinner("Obtaining Cosine similarity for Glove..."):
|
356 |
sorted_cosine_sim_glove = get_sorted_cosine_similarity(
|
357 |
-
st.session_state.text_search,
|
|
|
358 |
)
|
359 |
|
360 |
# Sentence transformer embeddings
|
@@ -362,7 +398,8 @@ if st.session_state.text_search:
|
|
362 |
embeddings_metadata = {"embedding_model": "transformers", "model_name": ""}
|
363 |
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
|
364 |
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(
|
365 |
-
st.session_state.text_search,
|
|
|
366 |
)
|
367 |
|
368 |
# Results and Plot Pie Chart for Glove
|
|
|
21 |
##################################
|
22 |
### TODO: Add code here ##########
|
23 |
##################################
|
24 |
+
return np.exp(np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y)))
|
25 |
|
26 |
|
27 |
# Function to Load Glove Embeddings
|
|
|
125 |
##################################
|
126 |
##### TODO: Add code here ########
|
127 |
##################################
|
128 |
+
for word in sentence:
|
129 |
+
#print(sentence)
|
130 |
+
words = [word.strip('.,?!').lower() for word in sentence.split()]
|
131 |
+
total = 0
|
132 |
+
for w in words:
|
133 |
+
if w in embeddings:
|
134 |
+
embed += embeddings[w]
|
135 |
+
total +=1
|
136 |
+
if total != 0:
|
137 |
+
embed = embed/total
|
138 |
+
|
139 |
+
return embed
|
140 |
|
141 |
|
142 |
def get_category_embeddings(embeddings_metadata):
|
|
|
188 |
##########################################
|
189 |
## TODO: Get embeddings for categories ###
|
190 |
##########################################
|
191 |
+
category_embeddings = []
|
192 |
+
for cat in categories:
|
193 |
+
category_embeddings.append(get_glove_embeddings(cat))
|
194 |
|
195 |
else:
|
196 |
model_name = embeddings_metadata["model_name"]
|
|
|
205 |
else:
|
206 |
input_embedding = get_sentence_transformer_embeddings(st.session_state.text_search)
|
207 |
for index in range(len(categories)):
|
208 |
+
|
209 |
##########################################
|
210 |
# TODO: Compute cosine similarity between input sentence and categories
|
211 |
# TODO: Update category embeddings if category not found
|
212 |
##########################################
|
213 |
+
cat_scores = []
|
214 |
+
cat_idx = 0
|
215 |
+
for cat_embed in category_embeddings:
|
216 |
+
# Calc cosine sim
|
217 |
+
cat_scores.append((cat_idx, np.dot(input,cat_embed)))
|
218 |
+
# Store doc_id and score as a tuple
|
219 |
+
cat_idx +=1
|
220 |
+
|
221 |
+
|
222 |
+
sorted_list = sorted(cat_scores, key=lambda x: x[1])
|
223 |
+
|
224 |
+
sorted_cats = [element[0] for element in sorted_list]
|
225 |
+
|
226 |
+
#flip sorting order
|
227 |
+
sorted_cats = sorted_cats[::-1]
|
228 |
+
# Add list to Map
|
229 |
+
result = sorted_cats[0]
|
230 |
+
selected_cat = categories[result]
|
231 |
+
print(selected_cat)
|
232 |
+
|
233 |
+
|
234 |
+
return selected_cat
|
235 |
|
236 |
|
237 |
def plot_piechart(sorted_cosine_scores_items):
|
|
|
389 |
}
|
390 |
with st.spinner("Obtaining Cosine similarity for Glove..."):
|
391 |
sorted_cosine_sim_glove = get_sorted_cosine_similarity(
|
392 |
+
# st.session_state.text_search,
|
393 |
+
embeddings_metadata
|
394 |
)
|
395 |
|
396 |
# Sentence transformer embeddings
|
|
|
398 |
embeddings_metadata = {"embedding_model": "transformers", "model_name": ""}
|
399 |
with st.spinner("Obtaining Cosine similarity for 384d sentence transformer..."):
|
400 |
sorted_cosine_sim_transformer = get_sorted_cosine_similarity(
|
401 |
+
# st.session_state.text_search,
|
402 |
+
embeddings_metadata
|
403 |
)
|
404 |
|
405 |
# Results and Plot Pie Chart for Glove
|