Spaces:
Sleeping
Sleeping
File size: 1,348 Bytes
3ef14f8 caeef30 3ef14f8 a233482 d498112 3ef14f8 a5971a0 67f4fec b4f246b 67f4fec 1a8e94e a233482 30aaf10 d506c2a 30aaf10 c039d26 30aaf10 c039d26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = 'armandnlp/gpt2-TOD_finetuned_SGD'
tokenizer_TOD = AutoTokenizer.from_pretrained(model_name)
model_TOD = AutoModelForCausalLM.from_pretrained(model_name)
def generate_response(prompt):
input_ids = tokenizer_TOD(prompt, return_tensors="pt").input_ids
outputs = model_TOD.generate(input_ids,
do_sample=False,
max_length=1024,
eos_token_id=50262)
return tokenizer_TOD.batch_decode(outputs)[0]
#<|context|> <|user|> I want to go to the restaurant.<|endofcontext|>
iface = gr.Interface(fn=generate_response,
inputs="text",
outputs="text",
title="gpt2-TOD",
examples=[["<|context|> <|user|> I'm super hungry ! I want to go to the restaurant.<|endofcontext|>"],
"<|context|> <|user|> I want to go to the restaurant.\
<|system|> What food would you like to eat ? <|user|> Italian sounds good. <|endofcontext|>"],
description="Passing in a task-oriented dialogue context generates a belief state, actions to take and a response based on those actions",
)
iface.launch()
|