gpt2-TOD_app / app.py
armandstrickernlp
Make app
caeef30
raw
history blame
694 Bytes
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = 'armandnlp/gpt2-TOD_finetuned_SGD'
tokenizer_TOD = AutoTokenizer.from_pretrained(model_name)
model_TOD = AutoModelForCausalLM.from_pretrained(model_name)
def generate_response(message):
input_ids = tokenizer_TOD(prompt, return_tensors="pt").input_ids
outputs = model_TOD.generate(input_ids,
do_sample=False,
max_length=1024,
eos_token_id=50262)
return tokenizer_TOD.batch_decode(outputs)[0]
import gradio as gr
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
iface.launch()