Upload app.py with huggingface_hub
Browse files
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Depends, status
|
2 |
+
from fastapi.security import HTTPBasic, HTTPBasicCredentials
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
import joblib
|
5 |
+
import os
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Initialize FastAPI app
|
9 |
+
app = FastAPI(
|
10 |
+
title="Iris Classification API",
|
11 |
+
description="A REST API for predicting Iris species using a pre-trained scikit-learn model.",
|
12 |
+
version="1.0.0"
|
13 |
+
)
|
14 |
+
|
15 |
+
# --- Authentication Setup ---
|
16 |
+
security = HTTPBasic()
|
17 |
+
|
18 |
+
def get_current_username(credentials: HTTPBasicCredentials = Depends(security)):
|
19 |
+
correct_username = os.getenv("API_USERNAME")
|
20 |
+
correct_password = os.getenv("API_PASSWORD")
|
21 |
+
|
22 |
+
if not correct_username or not correct_password:
|
23 |
+
# This handles cases where secrets aren't set in HF Spaces (shouldn't happen if done correctly)
|
24 |
+
raise HTTPException(
|
25 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
26 |
+
detail="API credentials not configured on the server."
|
27 |
+
)
|
28 |
+
|
29 |
+
if not (credentials.username == correct_username and credentials.password == correct_password):
|
30 |
+
raise HTTPException(
|
31 |
+
status_code=status.HTTP_401_UNAUTHORIZED,
|
32 |
+
detail="Incorrect username or password",
|
33 |
+
headers={"WWW-Authenticate": "Basic"},
|
34 |
+
)
|
35 |
+
return credentials.username
|
36 |
+
|
37 |
+
# --- Model Loading ---
|
38 |
+
model = None
|
39 |
+
class_names = None
|
40 |
+
|
41 |
+
@app.on_event("startup")
|
42 |
+
async def load_artifacts():
|
43 |
+
global model, class_names
|
44 |
+
model_path = os.path.join("model", "iris_model.joblib")
|
45 |
+
class_names_path = os.path.join("model", "iris_class_names.joblib")
|
46 |
+
|
47 |
+
if not os.path.exists(model_path) or not os.path.exists(class_names_path):
|
48 |
+
raise RuntimeError(f"Model or class names file not found. Ensure '{model_path}' and '{class_names_path}' exist.")
|
49 |
+
|
50 |
+
model = joblib.load(model_path)
|
51 |
+
class_names = joblib.load(class_names_path)
|
52 |
+
print("Model and class names loaded successfully.")
|
53 |
+
|
54 |
+
# --- Request Body Model ---
|
55 |
+
class IrisFeatures(BaseModel):
|
56 |
+
sepal_length: float = Field(..., example=5.1, description="Sepal length in cm")
|
57 |
+
sepal_width: float = Field(..., example=3.5, description="Sepal width in cm")
|
58 |
+
petal_length: float = Field(..., example=1.4, description="Petal length in cm")
|
59 |
+
petal_width: float = Field(..., example=0.2, description="Petal width in cm")
|
60 |
+
|
61 |
+
# --- API Endpoint ---
|
62 |
+
@app.post("/predict", summary="Predict Iris Species", response_description="The predicted Iris species and probabilities.")
|
63 |
+
async def predict_iris(
|
64 |
+
features: IrisFeatures,
|
65 |
+
current_user: str = Depends(get_current_username)
|
66 |
+
):
|
67 |
+
if model is None or class_names is None:
|
68 |
+
raise HTTPException(
|
69 |
+
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
|
70 |
+
detail="Model is not loaded yet. Please try again in a moment."
|
71 |
+
)
|
72 |
+
|
73 |
+
input_data = np.array([[
|
74 |
+
features.sepal_length,
|
75 |
+
features.sepal_width,
|
76 |
+
features.petal_length,
|
77 |
+
features.petal_width
|
78 |
+
]])
|
79 |
+
|
80 |
+
prediction_index = model.predict(input_data)[0]
|
81 |
+
predicted_species = class_names[prediction_index]
|
82 |
+
|
83 |
+
probabilities = model.predict_proba(input_data)[0]
|
84 |
+
probabilities_dict = {name: float(prob) for name, prob in zip(class_names, probabilities)}
|
85 |
+
|
86 |
+
return {
|
87 |
+
"predicted_species": predicted_species,
|
88 |
+
"prediction_probabilities": probabilities_dict
|
89 |
+
}
|
90 |
+
|
91 |
+
# --- Health Check Endpoint ---
|
92 |
+
@app.get("/health", summary="Health Check", response_description="Indicates if the API is running.")
|
93 |
+
async def health_check():
|
94 |
+
return {"status": "ok", "model_loaded": model is not None}
|
95 |
+
|
96 |
+
# Note: The uvicorn.run part is for local execution.
|
97 |
+
# Hugging Face Spaces will use the CMD in the Dockerfile.
|
98 |
+
# For local testing in Colab, you'd use ngrok or colabcode (see below).
|