Spaces:
Runtime error
Runtime error
File size: 18,823 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from einops import rearrange, repeat
from .fm_utils import build_1d_sincos_posemb, build_2d_sincos_posemb, pair
class SequenceEncoderEmbedding(nn.Module):
"""Embedding module for encoding sequence inputs, like captions or a sequence of objects.
Args:
vocab_size: Vocabulary size
max_length: Maximum number of tokens in the sequence
dim_tokens: Dimension of output tokens. Can be set using init method.
sincos_pos_emb: Set to True (default) to use fixed 1D sin-cos positional embeddings
max_sincos_pos_emb: Maximum allowed length for sin-cos positional embeddings
padding_idx: Padding index for word embedding
"""
def __init__(self,
vocab_size: int,
max_length: int,
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
max_sincos_pos_emb: int = 512,
padding_idx: int = 0,
):
super().__init__()
self.vocab_size = vocab_size
self.max_length = max_length
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.padding_idx = padding_idx
self.max_sincos_pos_emb = max_sincos_pos_emb
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768, init_std=0.02):
"""
Initialize parts of embedding module that are dependent on dimension of tokens.
Should be called when setting up FourM.
Args:
dim_tokens: Dimension of tokens
init_std: Standard deviation of init
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
if self.sincos_pos_emb:
if self.max_length > self.max_sincos_pos_emb:
raise ValueError(f"Max length ({self.max_length}) is greater than the number of posembs ({self.max_sincos_pos_emb}")
pos_emb = build_1d_sincos_posemb(max_len=self.max_sincos_pos_emb, embed_dim=self.dim_tokens)[:self.max_length]
self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
else:
self.pos_emb = nn.Parameter(torch.zeros(1, self.max_length, self.dim_tokens))
nn.init.normal_(self.pos_emb, std=init_std)
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
nn.init.normal_(self.mod_emb, std=init_std)
# Token embedding
self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens,
padding_idx=self.padding_idx)
@torch.jit.ignore
def no_weight_decay(self):
return set()
def forward(self, d : Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Forward pass through embedding module, transforming sequence of ids to sequence of embeddings.
Creates corresponding modality and positional embeddings and adds them to the dict.
Args:
d (Dict[str, torch.Tensor]): Modality dict with at least the following keys:
- 'tensor' (torch.Tensor): Input token sequence for each batch. Shape (B, L) where B is the batch size and L is the sequence length.
- 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).
Returns:
Dict[str, torch.Tensor]: Modality dict with added keys:
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, L, D) where D is the embedding dimension.
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, L, D).
"""
ids = d['tensor']
B = ids.shape[0]
assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'
# Map to embedding
x = self.token_emb(ids)
expanded_pos_emb = repeat(self.pos_emb, "() n d -> b n d", b=B)
# Input pos encoding
input_mask = d['input_mask']
input_pos_id = (~input_mask).int().cumsum(dim=1) - 1
input_pos_id[input_mask] = 0
input_pos_emb = torch.gather(expanded_pos_emb, dim=1, index=repeat(input_pos_id, "b n -> b n d", d=expanded_pos_emb.shape[2]))
input_pos_emb[input_mask] = 0
x_emb = input_pos_emb + self.mod_emb
d['x'] = x
d['emb'] = x_emb
return d
class ImageTokenEncoderEmbedding(nn.Module):
"""Embedding module for tokenized spatial inputs.
Args:
vocab_size: Vocabulary size
patch_size: Int or tuple of the patch size over the full image size.
dim_tokens: Dimension of output tokens. Can be set using init method.
sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
image_size: Default image size. Used to initialize size of positional embeddings.
"""
def __init__(self,
vocab_size: int,
patch_size: Union[int, Tuple[int,int]] = 16,
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
image_size: Union[int, Tuple[int]] = 224,
**kwargs):
super().__init__()
self.vocab_size = vocab_size
self.patch_size = pair(patch_size)
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.image_size = pair(image_size)
self.num_patches = (self.image_size[0] // patch_size) * (self.image_size[1] // patch_size)
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768, init_std=0.02):
"""
Initialize parts of module that are dependent on dimension of tokens.
Should be called when setting up FourM.
Args:
dim_tokens: Dimension of tokens
init_std: Standard deviation of init
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
h_posemb = self.image_size[0] // self.patch_size[0]
w_posemb = self.image_size[1] // self.patch_size[1]
if self.sincos_pos_emb:
pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens)
self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
else:
self.pos_emb = nn.Parameter(torch.zeros(1, (h_posemb * w_posemb), self.dim_tokens))
nn.init.normal_(self.pos_emb, std=init_std)
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
nn.init.normal_(self.mod_emb, std=init_std)
# Token embedding
self.token_emb = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.dim_tokens)
@torch.jit.ignore
def no_weight_decay(self):
return set()
def forward(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Forward pass through embedding module, transforming image tokens to a sequence of embeddings.
Creates corresponding modality and positional embeddings and adds them to the dict.
Args:
d (Dict[str, torch.Tensor]): Modality dict with at least the following key:
- 'tensor' (torch.Tensor): Input image tokens for each batch. Shape (B, H, W) where B is the batch size, and H, W are height and width of the tokenized image. - 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).
Returns:
Dict[str, torch.Tensor]: Modality dictionary with added keys:
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, H*W, D).
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, H*W, D).
"""
ids = d['tensor']
B = ids.shape[0]
ids = ids.reshape(B, -1)
# Map to embedding
x = self.token_emb(ids)
# Create positional embedding + modality embedding
x_emb = repeat(self.pos_emb + self.mod_emb, '() n d -> b n d', b=B)
d['x'] = x
d['emb'] = x_emb
return d
class ImageEncoderEmbedding(nn.Module):
"""Embedding module for spatial inputs, like images or feature maps.
Creates tokens from patches over the image.
This adapter / embedding differs from the one of MultiMAE by taking as input a dict and
separating positional embeddings and modality embeddings from the input projection
Input projection is 'x', posemb + modemb is 'emb'
Args:
num_channels: Number of input channels of the image/feature map
patch_size: Int or tuple of the patch size over the full image size.
dim_tokens: Dimension of output tokens. Can be set using init method.
sincos_pos_emb: Set to True (default) to use fixed 2D sin-cos positional embeddings
image_size: Default image size. Used to initialize size of positional embeddings.
"""
def __init__(self,
num_channels: int,
patch_size: Union[int, Tuple[int,int]],
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
image_size: Union[int, Tuple[int]] = 224):
super().__init__()
self.num_channels = num_channels
self.patch_size = pair(patch_size)
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.image_size = pair(image_size)
self.num_patches = (self.image_size[0] // patch_size) * (self.image_size[1] // patch_size)
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768, init_std=0.02):
"""
Initialize parts of encoder that are dependent on dimension of tokens.
Should be called when setting up FourM.
Args:
dim_tokens: Dimension of tokens
init_std: Standard deviation of init
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
h_posemb = self.image_size[0] // self.patch_size[0]
w_posemb = self.image_size[1] // self.patch_size[1]
if self.sincos_pos_emb:
pos_emb = build_2d_sincos_posemb(h=h_posemb, w=w_posemb, embed_dim=self.dim_tokens)
self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
else:
self.pos_emb = nn.Parameter(torch.zeros(1, (h_posemb * w_posemb), self.dim_tokens))
nn.init.normal_(self.pos_emb, std=init_std)
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
nn.init.normal_(self.mod_emb, std=init_std)
# Image -> tokens projection
# No bias term here, so modality embedding fully comes from self.mod_emb
self.proj = nn.Linear(self.num_channels * self.patch_size[0] * self.patch_size[1], self.dim_tokens, bias=False)
@torch.jit.ignore
def no_weight_decay(self):
return set()
def forward(self, d: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
"""
Forward pass through embedding module, transforming image to sequence of tokens.
Creates corresponding modality and positional embeddings and adds them to the dict.
Args:
d (Dict[str, torch.Tensor]): Modality dict with at least the following key:
- 'tensor' (torch.Tensor): Input image for each batch. Shape (B, C, H, W) where B is the batch size, C is the number of channels, and H, W are height and width of the image.
Returns:
Dict[str, torch.Tensor]: Modality dict with added keys:
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, (H / PH) * (W / PW), D), where PH and PW are the patch sizes
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, (H / PH) * (W / PW), D)
"""
x = d['tensor']
B, C, H, W = x.shape
assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'
assert (H % self.patch_size[0] == 0) and (W % self.patch_size[1] == 0), f'Image sizes {H}x{W} must be divisible by patch sizes {self.patch_size[0]}x{self.patch_size[1]}'
# Create patches [B, C, H, W] -> [B, (H*W), C]
x_patch = self.proj(rearrange(x, 'b d (nh ph) (nw pw) -> b (nh nw) (ph pw d)', ph=self.patch_size[0], pw=self.patch_size[1]))
# Create positional embedding + modality embedding
x_emb = repeat(self.pos_emb + self.mod_emb, '() n d -> b n d', b=B)
d['x'] = x_patch
d['emb'] = x_emb
return d
class SequenceEmbEncoderEmbedding(nn.Module):
"""Adapter for sequence emb inputs, like T5-XXL, CLIP text embeddings.
Args:
max_length: Maximum number of tokens in the sequence
dim_tokens: Dimension of output tokens. Can be set using init method.
sincos_pos_emb: Set to True (default) to use fixed 1D sin-cos positional embeddings
padding_idx: Padding index for word embedding
orig_emb_dim: Dimension of original embeddings
bottleneck_dim: Dimension of bottleneck layer
use_bottleneck: Set to True to use bottleneck layer
"""
def __init__(self,
max_length: int,
dim_tokens: Optional[int] = None,
sincos_pos_emb: bool = True,
max_sincos_pos_emb: int = 512,
padding_idx: int = 0,
orig_emb_dim: int = 4096,
bottleneck_dim: int = 64,
use_bottleneck: bool = False,
):
super().__init__()
self.max_length = max_length
self.dim_tokens = dim_tokens
self.sincos_pos_emb = sincos_pos_emb
self.padding_idx = padding_idx
self.max_sincos_pos_emb = max_sincos_pos_emb
self.orig_emb_dim = orig_emb_dim
self.use_bottleneck = use_bottleneck
if self.use_bottleneck:
self.bottleneck_dim = bottleneck_dim
if self.dim_tokens is not None:
self.init(dim_tokens=dim_tokens)
def init(self, dim_tokens: int = 768, init_std=0.02):
"""
Initialize parts of embedding module that are dependent on dimension of tokens.
Should be called when setting up FourM.
Args:
dim_tokens: Dimension of tokens
init_std: Standard deviation of init
"""
self.dim_tokens = dim_tokens
# Task embedding identifying from which task a given token comes from
# Fixed-size positional embeddings. Can be interpolated to different input sizes
if self.sincos_pos_emb:
if self.max_length > self.max_sincos_pos_emb:
raise ValueError(f"Max length ({self.max_length}) is greater than the number of posembs ({self.max_sincos_pos_emb}")
pos_emb = build_1d_sincos_posemb(max_len=self.max_sincos_pos_emb, embed_dim=self.dim_tokens)[:self.max_length]
self.register_buffer("pos_emb", pos_emb) # self.pos_emb is now a buffer for FSDP
else:
self.pos_emb = nn.Parameter(torch.zeros(1, self.max_length, self.dim_tokens))
nn.init.normal_(self.pos_emb, std=init_std)
self.mod_emb = nn.Parameter(torch.zeros(1, 1, self.dim_tokens))
nn.init.normal_(self.mod_emb, std=init_std)
# Token embedding projection
if self.use_bottleneck:
self.emb_proj = nn.Sequential(
nn.Linear(self.orig_emb_dim, self.bottleneck_dim),
nn.Linear(self.bottleneck_dim, self.dim_tokens),
)
else:
self.emb_proj = nn.Linear(self.orig_emb_dim, self.dim_tokens)
@torch.jit.ignore
def no_weight_decay(self):
return set()
def forward(self, d):
"""
Forward pass through embedding module, projecting original embeddings to the Transformer dimension.
Creates corresponding modality and positional embeddings and adds them to the dict.
Args:
d (Dict[str, torch.Tensor]): Modality dict with at least the following keys:
- 'tensor' (torch.Tensor): Input token sequence for each batch. Shape (B, L, E) where B is the batch size and L is the sequence length, and E is the dimension of the original embeddings.
- 'input_mask' (torch.Tensor): Mask for valid tokens in the input sequence (set to 0 for valid tokens and 1 otherwise). Shape (B, L).
Returns:
Dict[str, torch.Tensor]: Modality dict with added keys:
- 'x' (torch.Tensor): Embedded token sequence. Shape (B, L, D) where D is the Transformer embedding dimension.
- 'emb' (torch.Tensor): Sum of positional and modality embeddings for the input sequence. Shape (B, L, D).
"""
orig_emb = d['tensor']
B = orig_emb.shape[0]
assert self.dim_tokens is not None, 'Need to call init(dim_tokens) function first'
# Map to embedding
x = self.emb_proj(orig_emb)
expanded_pos_emb = repeat(self.pos_emb, "() n d -> b n d", b=B)
# Input pos encoding
input_mask = d['input_mask']
input_pos_id = (~input_mask).int().cumsum(dim=1) - 1
input_pos_id[input_mask] = 0
input_pos_emb = torch.gather(expanded_pos_emb, dim=1, index=repeat(input_pos_id, "b n -> b n d", d=expanded_pos_emb.shape[2]))
input_pos_emb[input_mask] = 0
x_emb = input_pos_emb + self.mod_emb
d['x'] = x
d['emb'] = x_emb
return d
|