File size: 14,724 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import copy
from functools import partial
from typing import Optional, Union

import torch
from torch import nn

from fourm.utils.timm.registry import register_model
from huggingface_hub import PyTorchModelHubMixin

from .encoder_embeddings import ImageEncoderEmbedding
from .fm_utils import Block, LayerNorm
from fourm.data.modality_info import MODALITY_INFO


__all__ = [
    # GELU models
    'fm_vit_tiny_6e_gelu',
    'fm_vit_small_8e_gelu',
    'fm_vit_base_12e_gelu',
    'fm_vit_large_24e_gelu',
    'fm_vit_xlarge_24e_gelu',
    # SwiGLU models
    'fm_vit_tiny_6e_swiglu_nobias',
    'fm_vit_small_8e_swiglu_nobias',
    'fm_vit_base_12e_swiglu_nobias',
    'fm_vit_large_24e_swiglu_nobias',
    'fm_vit_xlarge_24e_swiglu_nobias',
    # SwiGLU + QKNorm models
    'fm_vit_base_12e_swiglu_qknorm_nobias',
    'fm_vit_large_24e_swiglu_qknorm_nobias',
    'fm_vit_xlarge_24e_swiglu_qknorm_nobias',
]

class FourMViT(nn.Module):
    """Modified 4M model, adapted to behave as a simple RGB-only ViT.

    Args:
        img_size (int): Input image size.
        patch_size (int): Patch size.
        in_chans (int): Number of input image channels.
        dim (int): Patch embedding dimension.
        encoder_depth (int): Depth of ViT / number of encoder blocks.
        num_heads (int): Number of attention heads in each ViT block.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool): If True, add a learnable bias to query, key, value.
        proj_bias (bool): If True, adds a bias to the attention out proj layer.
        mlp_bias (bool): If True, adds a learnable bias for the feedforward.
        drop_path_rate (float): Stochastic depth rate.
        drop_rate (float): Dropout rate.
        attn_drop_rate (float): Attention dropout rate.
        act_layer (nn.Module): Activation layer.
        norm_layer (nn.Module): Normalization layer.
        gated_mlp (bool): If True, makes the feedforward gated (e.g., for SwiGLU)
        qk_norm (bool): If True, normalizes the query and keys (as in ViT-22B)
        use_act_checkpoint (bool): If True, use activation checkpointing.
        encoder_norm (bool): If True, adds a norm layer after the last encoder block.
        output_head (Optional[nn.Module]): Optional output head after the encoder
    """
    def __init__(
        self,
        img_size=224,
        patch_size=16,
        in_chans=3,
        dim=768,
        encoder_depth=12,
        num_heads=12,
        mlp_ratio=4.0,
        qkv_bias: bool = True,
        proj_bias: bool = True,
        mlp_bias: bool = True,
        drop_path_rate: float =0.0,
        drop_rate: float = 0.0,
        attn_drop_rate: float =0.0,
        act_layer: torch.Tensor =nn.GELU,
        norm_layer: Union[partial, nn.Module] = partial(LayerNorm, eps=1e-6),
        gated_mlp: bool = False, # Make the feedforward gated for e.g. SwiGLU
        qk_norm: bool = False,
        encoder_norm = True,
        output_head: Optional[nn.Module] = None,
    ):
        super().__init__()
        self.img_size = img_size
        self.init_std = 0.02
        rgb_embedding = ImageEncoderEmbedding(num_channels=in_chans, patch_size=patch_size,
                                              dim_tokens=dim, sincos_pos_emb=True, image_size=img_size)
        self.num_patches = rgb_embedding.num_patches
        self.encoder_embeddings = nn.ModuleDict({f"rgb@{img_size}": rgb_embedding})

        # stochastic depth decay rule
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, encoder_depth)]

        self.encoder = nn.ModuleList([
            Block(dim=dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, mlp_bias=mlp_bias,
                 drop_path=dpr[i], drop=drop_rate, attn_drop=attn_drop_rate, act_layer=act_layer, norm_layer=norm_layer, 
                 gated_mlp=gated_mlp, qk_norm=qk_norm)
            for i in range(encoder_depth)
        ])

        self.encoder_norm = norm_layer(dim) if encoder_norm else nn.Identity()

        # Weight init
        self.init_weights()

        # Classification head is initialized after init_weights() to allow for special init scale
        if output_head is not None:
            self.output_head = output_head
            if hasattr(self.output_head, 'init'):
                self.output_head.init(dim)
        else:
            self.output_head = nn.Identity()

    def init_weights(self):
        """Weight initialization following MAE's initialization scheme"""

        for name, m in self.named_modules():
            # Skipping tokenizers to avoid reinitializing them
            if "tokenizer" in name:
                continue
            # Linear
            elif isinstance(m, nn.Linear):
                if 'qkv' in name:
                    # treat the weights of Q, K, V separately
                    val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
                    nn.init.uniform_(m.weight, -val, val)
                elif 'kv' in name:
                    # treat the weights of K, V separately
                    val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1]))
                    nn.init.uniform_(m.weight, -val, val)
                else:
                    nn.init.xavier_uniform_(m.weight)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            # LayerNorm
            elif isinstance(m, nn.LayerNorm) or isinstance(m, LayerNorm):
                nn.init.constant_(m.weight, 1.0)
                nn.init.constant_(m.bias, 0)

            # Embedding
            elif isinstance(m, nn.Embedding):
                nn.init.normal_(m.weight, std=self.init_std)
            # Conv2d
            elif isinstance(m, nn.Conv2d):
                if '.proj' in name:
                    # From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
                    w = m.weight.data
                    nn.init.xavier_uniform_(w.view([w.shape[0], -1]))

    def get_num_layers_encoder(self):
        return len(self.encoder)
    
    def get_num_layers(self):
        return self.get_num_layers_encoder()
    
    @torch.jit.ignore
    def no_weight_decay(self):
        no_wd_set = set()

        for mod, emb_module in self.encoder_embeddings.items():
            if hasattr(emb_module, 'no_weight_decay'):
                to_skip = emb_module.no_weight_decay()
                to_skip = set([f'encoder_embeddings.{mod}.{name}' for name in to_skip])
                no_wd_set = no_wd_set | to_skip

        return no_wd_set
    

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Forward pass of the model.

        Args:
            x (torch.Tensor): Input tensor. Shape (B, C, H, W)

        Returns:
            torch.Tensor: Output tensor. Shape (B, num_classes).
        """
        rgb_dict = {'tensor': x}
        rgb_dict = self.encoder_embeddings[f'rgb@{self.img_size}'](rgb_dict)

        # Add embeddings to patchified RGB image 
        x = rgb_dict['x'] + rgb_dict['emb'] # Shape: (B, N, D) with N = num_patches

        for blk in self.encoder:
            x = blk(x)

        x = self.encoder_norm(x) # Shape: (B, N, D) 

        out = self.output_head(x)

        return out
    
    
    def freeze_encoder(self, freeze_embeddings=True):
        for param in self.encoder.parameters():
            param.requires_grad = False

        for param in self.encoder_norm.parameters():
            param.requires_grad = False

        if freeze_embeddings:
            for param in self.encoder_embeddings.parameters():
                param.requires_grad = False

    def unfreeze_encoder(self, unfreeze_embeddings=True):
        for param in self.encoder.parameters():
            param.requires_grad = True

        for param in self.encoder_norm.parameters():
            param.requires_grad = True

        if unfreeze_embeddings:
            for param in self.encoder_embeddings.parameters():
                param.requires_grad = True


################################################

# Wrapper for easy loading with Huggingface Hub

class FMViT(FourMViT, PyTorchModelHubMixin):
    """Wrapper around FourMViT for easy loading with Huggingface Hub.

    Args:
        config (dict): Dictionary containing the model and modality configuration, 
            used for loading from Huggingface Hub.
        output_head (nn.Module): Optional output head.
    """
    def __init__(self, config: dict, output_head: Optional[nn.Module] = None):

        config = copy.deepcopy(config)

        

        config['norm_layer'] = partial(LayerNorm, eps=1e-6, bias=config['norm_bias'])
        config['act_layer'] = getattr(torch.nn, config['act_layer'])

        img_size = config['image_size']
        config['img_size'] = img_size
        config['patch_size'] = MODALITY_INFO[f'rgb@{img_size}'].get('patch_size', config['patch_size'])
        config['in_chans'] = MODALITY_INFO[f'rgb@{img_size}'].get('num_channels', 3)

        for key in ['image_size', 'norm_bias', 'domains_in', 'domains_out', 'decoder_depth', 'share_modality_embeddings']:
            if key in config:
                del config[key]

        super().__init__(
            output_head=output_head,
            **config
        )   


################################################

# Model definitions
                
# GELU variants
@register_model
def fm_vit_tiny_6e_gelu(**kwargs):
    model = FourMViT(
        encoder_depth=6,
        dim=384,
        num_heads=6,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model


@register_model
def fm_vit_small_8e_gelu(**kwargs):
    model = FourMViT(
        encoder_depth=8,
        dim=512,
        num_heads=8,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model


@register_model
def fm_vit_base_12e_gelu(**kwargs):
    model = FourMViT(
        encoder_depth=12,
        dim=768,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model


@register_model
def fm_vit_large_24e_gelu(**kwargs):
    model = FourMViT(
        encoder_depth=24,
        dim=1024,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model

@register_model
def fm_vit_xlarge_24e_gelu(**kwargs):
    model = FourMViT(
        encoder_depth=24,
        dim=2048,
        num_heads=32,
        mlp_ratio=4,
        qkv_bias=True,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        **kwargs
    )
    return model


# SwiGLU variants
@register_model
def fm_vit_tiny_6e_swiglu_nobias(**kwargs):
    model = FourMViT(
        encoder_depth=6,
        dim=384,
        num_heads=6,
        mlp_ratio=4,
        qkv_bias=False,
        proj_bias=False,
        mlp_bias=False,
        norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
        act_layer=nn.SiLU,
        gated_mlp=True,
        **kwargs
    )
    return model


@register_model
def fm_vit_small_8e_swiglu_nobias(**kwargs):
    model = FourMViT(
        encoder_depth=8,
        dim=512,
        num_heads=8,
        mlp_ratio=4,
        qkv_bias=False,
        proj_bias=False,
        mlp_bias=False,
        norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
        act_layer=nn.SiLU,
        gated_mlp=True,
        **kwargs
    )
    return model


@register_model
def fm_vit_base_12e_swiglu_nobias(**kwargs):
    model = FourMViT(
        encoder_depth=12,
        dim=768,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=False,
        proj_bias=False,
        mlp_bias=False,
        norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
        act_layer=nn.SiLU,
        gated_mlp=True,
        **kwargs
    )
    return model


@register_model
def fm_vit_large_24e_swiglu_nobias(**kwargs):
    model = FourMViT(
        encoder_depth=24,
        dim=1024,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=False,
        proj_bias=False,
        mlp_bias=False,
        norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
        act_layer=nn.SiLU,
        gated_mlp=True,
        **kwargs
    )
    return model

@register_model
def fm_vit_xlarge_24e_swiglu_nobias(**kwargs):
    model = FourMViT(
        encoder_depth=24,
        dim=2048,
        num_heads=32,
        mlp_ratio=4,
        qkv_bias=False,
        proj_bias=False,
        mlp_bias=False,
        norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
        act_layer=nn.SiLU,
        gated_mlp=True,
        **kwargs
    )
    return model

# SwiGLU + QKNorm variants

@register_model
def fm_vit_base_12e_swiglu_qknorm_nobias(**kwargs):
    model = FourMViT(
        encoder_depth=12,
        dim=768,
        num_heads=12,
        mlp_ratio=4,
        qkv_bias=False,
        proj_bias=False,
        mlp_bias=False,
        norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
        act_layer=nn.SiLU,
        gated_mlp=True,
        qk_norm=True,
        **kwargs
    )
    return model


@register_model
def fm_vit_large_24e_swiglu_qknorm_nobias(**kwargs):
    model = FourMViT(
        encoder_depth=24,
        dim=1024,
        num_heads=16,
        mlp_ratio=4,
        qkv_bias=False,
        proj_bias=False,
        mlp_bias=False,
        norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
        act_layer=nn.SiLU,
        gated_mlp=True,
        qk_norm=True,
        **kwargs
    )
    return model

@register_model
def fm_vit_xlarge_24e_swiglu_qknorm_nobias(**kwargs):
    model = FourMViT(
        encoder_depth=24,
        dim=2048,
        num_heads=32,
        mlp_ratio=4,
        qkv_bias=False,
        proj_bias=False,
        mlp_bias=False,
        norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
        act_layer=nn.SiLU,
        gated_mlp=True,
        qk_norm=True,
        **kwargs
    )
    return model