File size: 6,571 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------
# Based on the timm code base
# https://github.com/huggingface/pytorch-image-models
# --------------------------------------------------------
import io
import os
import ast
import json
from pathlib import Path
from safetensors.torch import load as load_st

import torch

from .dist import save_on_main, is_main_process
from .timm.model import get_state_dict
from .s3_utils import save_on_s3


def _load_checkpoint_for_ema(model_ema, checkpoint):
    """
    Workaround for ModelEma._load_checkpoint to accept an already-loaded object
    """
    mem_file = io.BytesIO()
    torch.save(checkpoint, mem_file)
    mem_file.seek(0)
    model_ema._load_checkpoint(mem_file)


def load_state_dict(model, state_dict, prefix='', ignore_missing=''):
    missing_keys = []
    unexpected_keys = []
    error_msgs = []
    # copy state_dict so _load_from_state_dict can modify it
    metadata = getattr(state_dict, '_metadata', None)
    state_dict = state_dict.copy()
    if metadata is not None:
        state_dict._metadata = metadata

    def load(module, prefix=''):
        local_metadata = {} if metadata is None else metadata.get(
            prefix[:-1], {})
        module._load_from_state_dict(
            state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
        for name, child in module._modules.items():
            if child is not None:
                load(child, prefix + name + '.')

    load(model, prefix=prefix)

    warn_missing_keys = []
    ignore_missing_keys = []
    for key in missing_keys:
        keep_flag = True
        for ignore_key in ignore_missing.split('|'):
            if ignore_key in key:
                keep_flag = False
                break
        if keep_flag:
            warn_missing_keys.append(key)
        else:
            ignore_missing_keys.append(key)

    missing_keys = warn_missing_keys

    if len(missing_keys) > 0:
        print("Weights of {} not initialized from pretrained model: {}".format(
            model.__class__.__name__, missing_keys))
    if len(unexpected_keys) > 0:
        print("Weights from pretrained model not used in {}: {}".format(
            model.__class__.__name__, unexpected_keys))
    if len(ignore_missing_keys) > 0:
        print("Ignored weights of {} not initialized from pretrained model: {}".format(
            model.__class__.__name__, ignore_missing_keys))
    if len(error_msgs) > 0:
        print('\n'.join(error_msgs))


def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler, loss_balancer=None, model_ema=None, ckpt_name=None, use_s3=False, all_nodes=False):
    output_dir = Path(args.output_dir)
    epoch_name = str(epoch)
    ckpt_name = ckpt_name or epoch_name

    # Only create the save_dict on the main process, unless all_nodes is set to True
    if is_main_process() or (all_nodes and args.gpu == 0): 
        checkpoint_path = os.path.join(output_dir, f'checkpoint-{ckpt_name}.pth')

        to_save = {
            'model': model_without_ddp.state_dict(),
            'epoch': epoch,
            'args': args,
            'scaler': loss_scaler.state_dict(),
        }

        if optimizer is not None:
            to_save['optimizer'] = optimizer.state_dict()

        if loss_balancer is not None:
            to_save['loss_balancer'] = loss_balancer.state_dict()

        if model_ema is not None:
            to_save['model_ema'] = get_state_dict(model_ema)

        save_on_main(to_save, checkpoint_path)
        
        if use_s3: 
            s3_path = os.path.join(args.s3_save_dir, f'checkpoint-{ckpt_name}.pth')
            save_on_s3(checkpoint_path, s3_path, args.s3_endpoint)


def auto_load_model(args, model, model_without_ddp, optimizer, loss_scaler, model_ema=None):
    output_dir = Path(args.output_dir)
    # torch.amp
    if args.auto_resume and len(args.resume) == 0:
        import glob
        all_checkpoints = glob.glob(os.path.join(output_dir, 'checkpoint-*.pth'))
        latest_ckpt = -1
        for ckpt in all_checkpoints:
            t = ckpt.split('-')[-1].split('.')[0]
            if t.isdigit():
                latest_ckpt = max(int(t), latest_ckpt)
        if latest_ckpt >= 0:
            args.resume = os.path.join(output_dir, 'checkpoint-%d.pth' % latest_ckpt)
        print("Auto resume checkpoint: %s" % args.resume)

    if args.resume:
        if args.resume.startswith('https'):
            checkpoint = torch.hub.load_state_dict_from_url(
                args.resume, map_location='cpu')
        else:
            checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        print("Resume checkpoint %s" % args.resume)

        if 'optimizer' in checkpoint and 'epoch' in checkpoint:
            optimizer.load_state_dict(checkpoint['optimizer'])
            args.start_epoch = checkpoint['epoch'] + 1

            if 'scaler' in checkpoint:
                loss_scaler.load_state_dict(checkpoint['scaler'])
            print("With optim & sched!")

        if hasattr(args, 'model_ema') and args.model_ema:
            _load_checkpoint_for_ema(model_ema, {'state_dict_ema': checkpoint['model_ema']})
            print("With EMA!")

def parse_metadata(metadata_str):
    metadata = {}
    for k, v in metadata_str.items():
        try:
            v_parsed = ast.literal_eval(v)
        except:
            v_parsed = v
        metadata[k] = v_parsed
    return metadata

def load_safetensors(safetensors_path, return_metadata=True):
    with open(safetensors_path, 'rb') as f:
        data = f.read()

    tensors = load_st(data)

    if not return_metadata:
        return tensors
    
    n_header = data[:8]
    n = int.from_bytes(n_header, "little")
    metadata_bytes = data[8 : 8 + n]
    header = json.loads(metadata_bytes)
    metadata = header.get("__metadata__", {})
    metadata = parse_metadata(metadata)

    return tensors, metadata