Spaces:
Runtime error
Runtime error
File size: 56,014 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import torch
import torchvision.transforms.functional as TF
from einops import rearrange
import textwrap
import matplotlib.pyplot as plt
from PIL import Image
import cv2
from itertools import groupby
# For visualizing CLIP feature maps
from sklearn.decomposition import PCA
# Detectron2 for semantic segmentation visualizations
try:
from detectron2.utils.visualizer import ColorMode, Visualizer
from detectron2.data import MetadataCatalog
coco_metadata = MetadataCatalog.get("coco_2017_val_panoptic")
USE_DETECTRON = True
except Exception as e:
print(e)
print("Detectron2 can be used for semseg visualizations. Please install detectron2 to use this feature, or plotting will fall back to matplotlib.")
USE_DETECTRON = False
from fourm.data.modality_transforms import get_transform_key, get_transform_resolution, MetadataTransform
from fourm.utils.data_constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, COCO_SEMSEG_NUM_CLASSES
from fourm.utils import denormalize, get_sentinel_to_id_mapping, merge_span_masking
from fourm.utils.generation import unbatch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def tensor_to_images(tensor):
"""
Converts a (B C H W) tensor to numpy arrays.
If B = 1, the tensor is unbatched and converted to a single image.
If C = 1, the channel dimension is removed.
Args:
tensor (torch.Tensor): Tensor to convert to images.
"""
B, C, H, W = tensor.shape
if B == 1:
img = rearrange(unbatch(tensor), "c h w -> h w c")
else:
img = rearrange(tensor, "b c h w -> b h w c")
if C == 1:
img = img[..., 0]
return img.detach().cpu().numpy()
def pca_visualize(features, n_components=3):
"""
Visualizes a feature map using PCA.
Args:
features (torch.Tensor): CxHxW feature map to visualize.
n_components (int): Number of PCA components to use.
"""
C, H, W = features.shape
features_flat = rearrange(features.float(), 'c h w -> (h w) c').detach().cpu().numpy()
pca = PCA(n_components=n_components)
img_pca = rearrange(pca.fit_transform(features_flat), '(h w) c -> h w c', h=H, w=W)
img_pca = (img_pca - img_pca.min()) / (img_pca.max() - img_pca.min())
return img_pca
def np_squeeze(array, axis=0):
"""
Squeeses a numpy array along a given axis if that axis is one-dimensional.
Otherwise, it returns the same array.
Args:
array (numpy.ndarray): Array to squeeze.
axis (int): Axis to squeeze.
"""
if array.shape[axis] == 1:
return np.squeeze(array, axis=axis)
else:
return array
def decode_input_rgb(mod_dict, key='rgb'):
"""
Decodes (denormalizes) an RGB image from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the RGB modality to decode.
"""
img = denormalize(mod_dict[key]['tensor'])
return tensor_to_images(img)
def decode_tok_rgb(mod_dict, tokenizers, key='tok_rgb', image_size=224, patch_size=16, t=25, verbose=False):
"""
Decodes a sequence of RGB tokens from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized RGB modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = denormalize(rec, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_rgb_controlnet(mod_dict, tokenizers, key='tok_rgb', image_size=224, patch_size=16,
t=25, guidance_scale=2.5, cond_scale=0.8, verbose=False):
"""
Decodes a sequence of RGB tokens from a model dictionary into an RGB image using a ControlNet.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers. Needs to contain the key 'controlnet'.
key (str): Key of the tokenized RGB modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the ControlNet.
guidance_scale (float): Classifier-free guidance scale.
cond_scale (float): ControlNet conditioning scale.
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers['controlnet'].decode_tokens(
img_tok, timesteps=t, guidance_scale=guidance_scale, cond_scale=cond_scale, verbose=verbose
)
rec = tokenizers['controlnet'].vae_decode(rec)
rec = denormalize(rec, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_normal(mod_dict, tokenizers, key='tok_normal', image_size=224, patch_size=16, t=25, verbose=False):
"""
Decodes a sequence of surface normal tokens from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized normal modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = denormalize(rec, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_canny_edge(mod_dict, tokenizers, key='tok_canny_edge', image_size=224, patch_size=16, t=10, verbose=False):
"""
Decodes a sequence of Canny edges tokens from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized Canny edges modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = (0.5*(rec+1)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_sam_edge(mod_dict, tokenizers, key='tok_sam_edge', image_size=224, patch_size=16, t=10, verbose=False):
"""
Decodes a sequence of SAM edges from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized SAM edges modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = (0.5*(rec+1)).clamp(0, 1)
return tensor_to_images(rec)
def decode_tok_depth(mod_dict, tokenizers, key='tok_depth', image_size=224, patch_size=16, t=25, verbose=False, cmap='turbo'):
"""
Decodes a sequence of depth tokens from a model dictionary into an RGB image.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized depth modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
t (int): Number of timesteps to decode using the tokenizer diffusion model (if applicable).
verbose (bool): Whether to print the decoding progress.
cmap (str): Colormap to use for the depth image.
"""
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok, timesteps=t, image_size=image_size, verbose=verbose)
rec = rec.detach().cpu().numpy()[:,0]
if cmap is None:
return rec
colormap = plt.get_cmap('turbo')
imgs = []
for img in rec:
img_norm = (img - np.min(img)) / (np.max(img) - np.min(img))
rgb_image = colormap(img_norm)[..., :3]
imgs.append(rgb_image)
rgb_image = np_squeeze(np.stack(imgs), axis=0)
return rgb_image
def decode_tok_semseg(rgb_img, mod_dict, tokenizers, key='tok_semseg', image_size=224, patch_size=16, use_detectron=True, return_logits=False):
"""
Decodes a sequence of semantic segmentation tokens from a model dictionary into an RGB image.
Args:
rgb_img (torch.Tensor): RGB image to overlay the semantic segmentation on.
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
key (str): Key of the tokenized semantic segmentation modality to decode.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
use_detectron (bool): Uses detectron2's visualization for the semseg output.
"""
tokens = mod_dict[key]['tensor']
tokens = tokens.unsqueeze(0) if tokens.ndim == 1 else tokens
img_tok = rearrange(tokens, "b (nh nw) -> b nh nw", nh=image_size//patch_size, nw=image_size//patch_size)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok).detach().cpu()
if return_logits:
return rec
semsegs = rec.argmax(1)
B, H, W = semsegs.shape
if not use_detectron:
return semsegs if B > 1 else semsegs[0]
else:
rgb_imgs = [rgb_img] * B
imgs = []
for rgb, semseg in zip(rgb_imgs, semsegs):
if USE_DETECTRON:
v = Visualizer(255*rgb, coco_metadata, scale=1.2, instance_mode=ColorMode.IMAGE_BW)
img = v.draw_sem_seg((semseg-1).cpu()).get_image() / 255.0
else:
colormap = plt.get_cmap('viridis')
img = colormap(semseg.cpu())[..., :3]
imgs.append(img)
imgs = np_squeeze(np.stack(imgs), axis=0)
return imgs
def decode_tok_clip(mod_dict, tokenizers, key='tok_clip', image_size=224, patch_size=16):
"""
Decodes a sequence of CLIP tokens from a model dictionary into an PCA representation.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized CLIP modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
n_patches = image_size // patch_size
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=n_patches, nw=n_patches)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok)
pca_viz = [pca_visualize(feat) for feat in rec]
pca_viz = np_squeeze(np.stack(pca_viz), axis=0)
return pca_viz
def decode_tok_dinov2(mod_dict, tokenizers, key='tok_dinov2', image_size=224, patch_size=14):
"""
Decodes a sequence of DINOv2 spatial tokens from a model dictionary into an PCA representation.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized CLIP modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
patch_size = 14
n_patches = image_size // patch_size
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=n_patches, nw=n_patches)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok)
pca_viz = [pca_visualize(feat) for feat in rec]
pca_viz = np_squeeze(np.stack(pca_viz), axis=0)
return pca_viz
def decode_tok_imagebind(mod_dict, tokenizers, key='tok_imagebind', image_size=224, patch_size=14):
"""
Decodes a sequence of ImageBind spatial tokens from a model dictionary into an PCA representation.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized CLIP modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
patch_size = 14
n_patches = image_size // patch_size
img_tok = rearrange(mod_dict[key]['tensor'], "b (nh nw) -> b nh nw", nh=n_patches, nw=n_patches)
rec = tokenizers[get_transform_key(key)].decode_tokens(img_tok)
pca_viz = [pca_visualize(feat) for feat in rec]
pca_viz = np_squeeze(np.stack(pca_viz), axis=0)
return pca_viz
def decode_tok_dinov2_global(mod_dict, tokenizers, key='tok_dinov2_global'):
"""
Decodes a sequence of DINOv2 global tokens from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized DINOv2 global token modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
toks = rearrange(mod_dict[key]['tensor'].long(), 'b n -> b n 1 1')
rec = tokenizers[get_transform_key(key)].decode_tokens(toks)
return rec.squeeze()
def decode_tok_imagebind_global(mod_dict, tokenizers, key='tok_imagebind_global'):
"""
Decodes a sequence of ImageBind global tokens from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized ImageBind global token modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
toks = rearrange(mod_dict[key]['tensor'].long(), 'b n -> b n 1 1')
rec = tokenizers[get_transform_key(key)].decode_tokens(toks)
return rec.squeeze()
def decode_color_palette(mod_dict, text_tokenizer, key='color_palette'):
"""
Decodes a sequence of color palettes from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized ImageBind modality to decode.
tokenizers (dict): Dictionary of tokenizers.
image_size (int): Size of the image.
patch_size (int): Size of the patches.
"""
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
all_decoded = decoded if isinstance(decoded, list) else [decoded]
all_decoded = [d.replace(' [EOS]', '') for d in all_decoded]
all_decoded = [visualize_palettes_multi(d) for d in all_decoded]
all_decoded = all_decoded[0] if len(all_decoded) == 1 else all_decoded
return all_decoded
def decode_human_poses(mod_dict, tokenizers, text_tokenizer, key='human_poses'):
"""
Decodes human poses tokenized with text + BMLP
"""
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
all_decoded = decoded if isinstance(decoded, list) else [decoded]
all_decoded = [d.replace(' [EOS]', '') for d in all_decoded]
imgs = []
for decoded in all_decoded:
img = np.ones((224,224,4))
if decoded != 'none':
try:
img = visualize_human_poses(decoded, tokenizers[key], mod_dict)
except Exception as e:
print('Error in decoding human poses. Packages required for plotting may not be installed. Trace:')
print(e)
imgs.append(img)
imgs = np_squeeze(np.stack(imgs), axis=0)
return imgs
metadata_transform = MetadataTransform(shuffle=False, random_trunc=False, return_chunks=False)
def _split_metadata_string(input_string):
result = []
current_subseq = []
for part in input_string.split():
# If we encounter a "v1" and there's already a subsequence being built,
# we add it to the result and start a new one
if 'v1' in part and current_subseq:
result.append(current_subseq)
current_subseq = []
current_subseq.append(part)
# Append any remaining subsequence to the result
if current_subseq:
result.append(current_subseq)
return result
def decode_metadata(mod_dict, text_tokenizer, key='metadata'):
"""
Decodes a sequence of metadata tokens into a dictionary of metadata.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the metadata modality to decode.
text_tokenizer (tokenizers.Tokenizer): Text tokenizer.
"""
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
all_decoded = decoded if isinstance(decoded, list) else [decoded]
all_decoded = [d.replace(' [EOS]', '').replace(' [PAD]', '') for d in all_decoded]
all_metadata = []
for decoded in all_decoded:
parts = _split_metadata_string(decoded)
invalid_parts = []
metadata_dict = {}
for part in parts:
# Check if part has been parsed correctly
if len(part) != 2:
invalid_parts.append(str(part))
continue
metadata_id, metadata_value = part
if (not metadata_id.startswith('v1=') or
not metadata_value.startswith('v0=') or
metadata_id not in metadata_transform.id_metadata_map):
invalid_parts.append(str(part))
# Parse metadata type and value
metadata_type = metadata_transform.id_metadata_map[metadata_id]
metadata_value = int(metadata_value.split('=')[1])
if metadata_type in metadata_transform.image_dim_modalities:
metadata_value *= metadata_transform.image_dim_bin_size
elif metadata_type in metadata_transform.metadata_min_max_bins:
vmin, vmax, bins = metadata_transform.metadata_min_max_bins[metadata_type]
metadata_value = (vmax - vmin) * (metadata_value / bins) + vmin
metadata_dict[metadata_type] = metadata_value
metadata_dict = {k: metadata_dict[k] for k in metadata_transform.metadata_id_map if k in metadata_dict}
all_metadata.append(metadata_dict)
all_metadata = all_metadata[0] if len(all_metadata) == 1 else all_metadata
return all_metadata
def decode_text(mod_dict, key, text_tokenizer):
"""
Decodes a text sequence from a model dictionary.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the text modality to decode.
text_tokenizer (tokenizers.Tokenizer): Text tokenizer.
"""
input_texts, target_texts, merged_texts = [], [], []
sentinel_ids = set(get_sentinel_to_id_mapping(text_tokenizer).values())
B = mod_dict[key]['tensor'].shape[0]
for i in range(B):
input_seq = mod_dict[key]['tensor'][i]
input_seq = input_seq[mod_dict[key]['input_mask'][i] == 0]
input_seq = input_seq.tolist()
target_seq = mod_dict[key]['tensor'][i]
target_seq = target_seq[mod_dict[key]['target_mask'][i] == 0]
target_seq = target_seq.tolist()
merged_seq = merge_span_masking(input_seq, target_seq, sentinel_ids=sentinel_ids)
input_text = text_tokenizer.decode(input_seq, skip_special_tokens=False)
target_text = text_tokenizer.decode(target_seq, skip_special_tokens=False)
merged_text = text_tokenizer.decode(merged_seq, skip_special_tokens=False)
input_texts.append(input_text)
target_texts.append(target_text)
merged_texts.append(merged_text)
if B == 1:
input_texts, target_texts, merged_texts = input_texts[0], target_texts[0], merged_texts[0]
return input_texts, target_texts, merged_texts
def decode_sam_instances(mod_dict, tokenizers, text_tokenizer, key='sam_instance', image_size=224, token_len=16):
'''
Decodes a sequence of SAM instance tokens into the instance representation.
Args:
mod_dict (dict): Model output dictionary.
key (str): Key of the tokenized ImageBind modality to decode.
tokenizers (dict): Dictionary of tokenizers.
text_tokenizer (tokenizers.Tokenizer): Text tokenizer.
image_size (int): Size of the image.
token_len (int): Tokenized SAM instance token length.
'''
assert image_size == 224, 'SAM instance decoding only supports 224x224 images'
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
all_decoded = decoded if isinstance(decoded, list) else [decoded]
all_decoded = [d.replace(' [EOS]', '') for d in all_decoded]
# Generate deterministic SAM color palette
rng = np.random.default_rng(seed=0)
sam_palette = [rng.integers(0, 255, size=3) for i in range(1000)]
def group_by_identifier(input_list, identifier):
'''
Groups the input_list [a,b,c,a,d,d,c,..] using the identifier a, in the following format:
[[b,c], [d,d,c], ...]
'''
return [list(group) for key, group in groupby(input_list, lambda x: x == identifier) if not key]
def map_locations(inp, tokens=False):
'''
Converts v0, v1, v2, v3 textual representation into int.
When tokens=True, inp is mapped to its corresponding token id.
'''
if '=' not in inp:
return None
axis, position = inp.split("=")
try:
position = int(position)
except:
return None
if tokens:
if axis == 'v0':
return position
else:
return position + 512
return position
def iou(box1, box2):
'''
Calculates iou of the input bounding boxes
'''
# Calculate the coordinates of the intersection rectangle
x1 = max(box1[0], box2[0])
y1 = max(box1[1], box2[1])
x2 = min(box1[2], box2[2])
y2 = min(box1[3], box2[3])
# Calculate the area of the intersection
intersection_area = max(0, x2 - x1) * max(0, y2 - y1)
# Calculate the areas of the individual bounding boxes
area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
# Calculate the union area
union_area = area_box1 + area_box2 - intersection_area
# Calculate and return the IoU
return intersection_area / union_area
all_sam_instances = []
for decoded in all_decoded:
tokens_per_sample = []
bboxes_per_sample = []
areas_per_sample = []
parts = decoded.split()
for part in group_by_identifier(parts, identifier='point'):
instances = part[2:]
# Ignore 'none' cases
if len(instances) <= 1:
continue
for positions in group_by_identifier(part, identifier='polygon'):
# Ignore incomplete polygons
if len(positions) != token_len + 4:
continue
bbox, tokens = positions[:4], positions[4:]
min_w, min_h, max_w, max_h = map(map_locations, bbox)
# Ignore the cases where the bounding box is prediction is in incorrect format
if None in [min_w, max_w, min_h, max_h] or (min_w >= max_w or min_h >= max_h):
continue
bbox = np.array([min_h, min_w, max_h, max_w])
tokens = list(map(lambda x: map_locations(x, tokens=True), tokens))
if None in tokens:
continue
tokens = np.array(tokens)
tokens_per_sample.append(tokens)
bboxes_per_sample.append(bbox)
areas_per_sample.append((max_w - min_w) * (max_h - min_h))
final_instances = np.zeros((image_size, image_size, 3), dtype=np.uint8)
if len(areas_per_sample) == 0:
return final_instances
# Sort the instance masks by area
areas_per_sample = np.array(areas_per_sample)
sorted_idx = np.argsort(-areas_per_sample)
tokens_per_sample = np.stack(tokens_per_sample)[sorted_idx]
bboxes_per_sample = np.stack(bboxes_per_sample)[sorted_idx]
# Decoded tokens
tokens_per_sample = torch.LongTensor(tokens_per_sample).reshape(-1, 4, 4).to(device)
decoded_tokens = tokenizers[key].decode_tokens(tokens_per_sample)
instances = torch.sigmoid(decoded_tokens).squeeze(1).cpu().detach().numpy()
# Filter and group instances
representive_masks = []
representive_bboxes = []
for (mask, bbox) in zip(instances, bboxes_per_sample):
# Filter out unusual masks
if (mask.max() - mask.min()) < 0.9:
continue
# Groups the duplicated instance masks
duplicated_flag = False
for rms, rbs in zip(representive_masks, representive_bboxes):
rm, rb = rms[0], rbs[0]
sim_score = 2 * ((rm * mask).sum() + 0.01) / (rm.sum() + mask.sum() + 0.01)
box_iou = iou(rb, bbox)
# If the similarity and IoU are high, consider them as the same instance and group them
if sim_score > 0.8 and box_iou > 0.9:
# Add the mask to its corresponding group
rms.append(mask)
rbs.append(bbox)
duplicated_flag = True
break
if not duplicated_flag:
representive_masks.append([mask])
representive_bboxes.append([bbox])
# Plot the instances
for i, (rms, rbs) in enumerate(zip(representive_masks, representive_bboxes)):
mask = np.mean(rms, axis=0)
bbox = np.mean(rbs, axis=0).astype(np.int32)
min_h, min_w, max_h, max_w = bbox.tolist()
mask = cv2.resize(mask, (max_w - min_w, max_h - min_h), interpolation=cv2.INTER_CUBIC)
max_w, max_h = min(max_w, final_instances.shape[1]), min(max_h, final_instances.shape[0])
mask = mask[:max_h - min_h,:max_w - min_w] > 0.5
final_instances[min_h:max_h, min_w:max_w, :][mask] = sam_palette[i]
all_sam_instances.append(final_instances)
all_sam_instances = all_sam_instances[0] if len(all_sam_instances) == 1 else np.stack(all_sam_instances)
return all_sam_instances
def decode_dict(mod_dict, tokenizers, text_tokenizer, image_size=224, patch_size=16,
decoding_steps=25, activate_controlnet=False, controlnet_guidance_scale=2.5, controlnet_cond_scale=0.8,
to_rgb=True, seed=None):
"""
Decodes the model output dictionary into a dictionary of images and text.
Args:
mod_dict (dict): Model output dictionary.
tokenizers (dict): Dictionary of tokenizers.
text_tokenizer (tokenizers.Tokenizer): Text tokenizer.
image_size (int): Image size.
patch_size (int): Patch size.
decoding_steps (int): Number of diffusion decoding steps (if applicable).
activate_controlnet (bool): Whether to activate the RGB ControlNet and override the RGB detokenizer.
controlnet_guidance_scale (float): Classifier-free guidance scale for the ControlNet.
controlnet_cond_scale (float): ControlNet conditioning scale.
"""
dec_dict = {}
for key in mod_dict:
k, res = get_transform_key(key), get_transform_resolution(key, image_size, to_tuple=False)
if k == 'rgb':
decoded = decode_input_rgb(mod_dict, key=key)
elif k == 'tok_rgb':
if not activate_controlnet or 'controlnet' not in tokenizers:
decoded = decode_tok_rgb(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False
)
else:
decoded = decode_tok_rgb_controlnet(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, guidance_scale=controlnet_guidance_scale,
cond_scale=controlnet_cond_scale, verbose=False
)
elif k == 'tok_canny_edge':
decoded = decode_tok_canny_edge(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False
)
elif k == 'tok_sam_edge':
decoded = decode_tok_sam_edge(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False
)
elif k == 'tok_normal':
decoded = decode_tok_normal(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False
)
elif k == 'tok_depth':
decoded = decode_tok_depth(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size,
t=decoding_steps, verbose=False, cmap='turbo' if to_rgb else None
)
elif k == 'tok_semseg':
decoded = decode_tok_semseg(
np.ones((res, res, 3)), mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size, return_logits=not to_rgb
)
elif k == 'tok_clip':
decoded = decode_tok_clip(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size
)
elif k == 'tok_dinov2':
decoded = decode_tok_dinov2(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size
)
elif k == 'tok_dinov2_global':
decoded = decode_tok_dinov2_global(
mod_dict, tokenizers, key=key
)
elif k == 'tok_imagebind':
decoded = decode_tok_imagebind(
mod_dict, tokenizers, key=key,
image_size=res, patch_size=patch_size
)
elif k == 'tok_imagebind_global':
decoded = decode_tok_imagebind_global(
mod_dict, tokenizers, key=key
)
elif k == 'color_palette':
decoded = decode_color_palette(
mod_dict, text_tokenizer, key=key
)
elif k == 'human_poses':
decoded = decode_human_poses(
mod_dict, tokenizers, text_tokenizer, key=key
)
elif k in ['caption', 'det']:
decoded = decode_text(mod_dict, key, text_tokenizer)[2]
decoded = decoded if isinstance(decoded, list) else [decoded]
decoded = [d.replace(' [EOS]', '') for d in decoded]
elif k in ['metadata']:
decoded = decode_metadata(
mod_dict, text_tokenizer, key=key
)
elif k == 'sam_instance':
decoded = decode_sam_instances(
mod_dict, tokenizers, text_tokenizer,
key=key, image_size=224,
)
elif k in ['t5_caption']:
if 'ascii_tensor' in mod_dict[key]:
decoded = []
for ascii_tensor in mod_dict[key]['ascii_tensor']:
ascii_values = ascii_tensor.flatten().tolist()
decoded_text = ''.join(chr(val) for val in ascii_values if val != 0)
decoded.append(f"T5-XXL embedding of: {decoded_text}")
decoded = decoded[0] if len(decoded) == 1 else decoded
else:
decoded = "T5-XXL embedding"
dec_dict[key] = decoded
return dec_dict
# Plotting utils
MOD_PRINT_NAMES = {
'rgb': 'RGB',
'tok_rgb': 'RGB (tok)',
'tok_normal': 'Normal (tok)',
'tok_depth': 'Depth (tok)',
'tok_semseg': 'Semseg (tok)',
'tok_clip': 'CLIP (tok)',
'tok_canny': 'Canny (tok)',
'tok_sam': 'SAM (tok)',
'sam_instance': 'SAM Instances (tok)',
'rgb@224': 'RGB@224',
'tok_rgb@224': 'RGB@224 (tok)',
'tok_normal@224': 'Normal@224 (tok)',
'tok_depth@224': 'Depth@224 (tok)',
'tok_semseg@224': 'Semseg@224 (tok)',
'tok_clip@224': 'CLIP@224 (tok)',
'rgb@448': 'RGB@448',
'tok_rgb@448': 'RGB@448 (tok)',
'tok_normal@448': 'Normal@448 (tok)',
'tok_depth@448': 'Depth@448 (tok)',
'tok_semseg@448': 'Semseg@448 (tok)',
'tok_clip@448': 'CLIP@448 (tok)',
'caption': 'Caption',
'det': 'Detection',
't5_caption': 'T5 XXL',
'metadata': 'Metadata',
'human_poses': 'Human poses',
'color_palette': 'Color palette',
'tok_dinov2': 'DINOv2 (tok)',
'tok_dinov2_global': 'DINOv2 global (tok)',
'tok_imagebind': 'ImageBind (tok)',
'tok_imagebind_global': 'ImageBind global (tok)',
}
def remove_ticks_and_labels(ax):
"""
Remove the axis ticks and labels
Args:
ax (matplotlib.axes.Axes): Axis to remove ticks and labels from
"""
ax.set_xticks([])
ax.set_yticks([])
ax.set_xticklabels([])
ax.set_yticklabels([])
def remove_spines(ax):
"""
Removes the spines from the given axis.
Args:
ax (matplotlib.axes.Axes): Axis to remove spines from
"""
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
def convert_string_to_bboxes(bboxes_str, bins=1000):
"""
Converts a string of bboxes to a list of bboxes.
Args:
bboxes_str (str): String of bboxes
bins (int): Number of bins (default: 1000)
"""
bboxes_str = bboxes_str.split(" ")
bboxes = []
for token in bboxes_str:
if "=" in token:
coord = token.split("=")[1]
coord = float(coord) / (bins - 1)
if token.startswith("v0="):
bboxes.append([coord,])
else:
bboxes[-1].append(coord)
elif len(bboxes[-1]) == 4:
bboxes[-1].append(token)
else:
bboxes[-1][4] = " ".join([bboxes[-1][4], token])
bboxes = [bbox for bbox in bboxes if len(bbox) == 5]
return bboxes
def visualize_palettes_multi(palettes):
palettes = palettes.split()
palettes = palettes[1:]
all_colors = []
for ii in range(len(palettes)):
all_colors.append(int(palettes[ii][3:]))
w = h = 25
# construct palette image
o = Image.new("RGB", size=(w * len(palettes)//3, h * len(palettes)//3))
arr = np.asarray(o).copy()
for ii in range(len(palettes)//3):
arr[:, ii * h : (ii + 1) * h, :] = all_colors[ii*3:(ii+1)*3]
final_palette = arr / 255
return final_palette
BOX_COLOR = (255, 0, 0) # Red
TEXT_COLOR = (255, 255, 255) # White
try:
from fourm.utils.hmr2_utils.hmr2.models.smpl_wrapper import SMPL
from fourm.utils.hmr2_utils.hmr2.utils.renderer import Renderer, cam_crop_to_full
import pickle as pkl
LIGHT_BLUE=(0.65098039, 0.74117647, 0.85882353)
with open('./fourm/utils/hmr2_utils/model_cfg.pkl','rb') as f:
pose_model_cfg = pkl.load(f)
# Instantiate SMPL model
smpl_cfg = {k.lower(): v for k,v in dict(pose_model_cfg.SMPL).items()}
smpl_cfg['model_path'] = './fourm/utils/hmr2_utils/data/smpl'
smpl_cfg['joint_regressor_extra'] = './fourm/utils/hmr2_utils/data/SMPL_to_J19.pkl'
smpl_cfg['mean_params'] = './fourm/utils/hmr2_utils/data/smpl_mean_params.npz'
smpl = SMPL(**smpl_cfg)
# Setup the renderer
renderer = Renderer(pose_model_cfg, faces=smpl.faces)
except Exception as e:
print(e)
print('Human pose dependencies are not installed, hence poses will not be visualized. To visualize them (optional), you can do the following: \n' \
'1) Install via `pip install timm yacs smplx pyrender pyopengl==3.1.4` \n' \
' You may need to follow the pyrender install instructions: https://pyrender.readthedocs.io/en/latest/install/index.html \n' \
'2) Download SMPL data from https://smpl.is.tue.mpg.de/. See https://github.com/shubham-goel/4D-Humans/ for an example. \n' \
'3) Copy the required SMPL files (smpl_mean_params.npz, SMPL_to_J19.pkl, smpl/SMPL_NEUTRAL.pkl) to fourm/utils/hmr2_utils/data .')
def visualize_human_poses(pose, poses_tokenizer, mod_dict):
full_gts = pose
full_gts = full_gts.split()
num_instances = len(full_gts) // 39 # total length of a pose instance seq is 39
all_verts = []
all_cam_t = []
for inst in range(num_instances):
try:
full_gt = full_gts[inst*39:(inst+1)*39]
##create the pose params dict
all_params = {}
all_params['bbox_xyxy'] = torch.Tensor((int(full_gt[1][3:])/999*224, int(full_gt[2][3:])/999*224, int(full_gt[3][3:])/999*224, int(full_gt[4][3:])/999*224))
all_params["box_center"] = torch.cat(( ((all_params["bbox_xyxy"][0] + all_params["bbox_xyxy"][2]) / 2.).unsqueeze(0).unsqueeze(1) , ( (all_params["bbox_xyxy"][1] + all_params["bbox_xyxy"][3]) / 2.).unsqueeze(0).unsqueeze(1) ), dim = 1)
all_params["box_size"] = torch.max((all_params["box_center"][0,0] - all_params["bbox_xyxy"][0]) * 2 , (all_params["box_center"][0,1] - all_params["bbox_xyxy"][1]) * 2 )
all_params["img_size"] = torch.Tensor([224., 224.])
all_params["img_size"] = all_params["img_size"].unsqueeze(0)
all_params["focal_length"] = torch.Tensor([5000., 5000.])
for ii in range(len(full_gt)):
if full_gt[ii] == 'camera':
all_params['pred_cam'] = torch.Tensor([ (int(full_gt[ii+1][3:])-49.95)/49.95, (int(full_gt[ii+2][3:])-49.95)/49.95, (int(full_gt[ii+3][3:])-49.95)/49.95 ])
break
all_params['pred_cam'] = all_params['pred_cam'].unsqueeze(0)
all_params['pred_smpl_params'] = {}
for ii in range(len(full_gt)):
if full_gt[ii] == 'shape':
all_params['pred_smpl_params']['betas'] = torch.Tensor([ (int(full_gt[ii+1][3:])-499.5)/166.5, (int(full_gt[ii+2][3:])-499.5)/166.5, (int(full_gt[ii+3][3:])-499.5)/166.5, (int(full_gt[ii+4][3:])-499.5)/166.5, (int(full_gt[ii+5][3:])-499.5)/166.5, (int(full_gt[ii+6][3:])-499.5)/166.5, (int(full_gt[ii+7][3:])-499.5)/166.5, (int(full_gt[ii+8][3:])-499.5)/166.5, (int(full_gt[ii+9][3:])-499.5)/166.5, (int(full_gt[ii+10][3:])-499.5)/166.5 ])
break
all_params['pred_smpl_params']['betas'] = all_params['pred_smpl_params']['betas'].unsqueeze(0)
for ii in range(len(full_gt)):
if full_gt[ii] == 'global':
all_params['pred_smpl_params']['global_orient'] = torch.Tensor( [ [(int(full_gt[ii+1][3:])-499.5)/499.5, (int(full_gt[ii+2][3:])-499.5)/499.5, (int(full_gt[ii+3][3:])-499.5)/499.5 ] , [ (int(full_gt[ii+4][3:])-499.5)/499.5, (int(full_gt[ii+5][3:])-499.5)/499.5, (int(full_gt[ii+6][3:])-499.5)/499.5], [(int(full_gt[ii+7][3:])-499.5)/499.5, (int(full_gt[ii+8][3:])-499.5)/499.5, (int(full_gt[ii+9][3:])-499.5)/499.5 ] ] )
break
all_params['pred_smpl_params']['global_orient'] = all_params['pred_smpl_params']['global_orient'].unsqueeze(0).unsqueeze(0)
body_poses = torch.FloatTensor()
for ii in range(len(full_gt)):
if full_gt[ii] == 'pose':
pose_start = ii
break
for ii in range(8):
pose_curr = ii + pose_start + 1
if 'v1' in full_gt[pose_curr]:
poses_curr = torch.Tensor([int(full_gt[pose_curr][3:])+512])
else:
poses_curr = torch.Tensor([int(full_gt[pose_curr][3:])])
poses_curr = poses_curr
body_poses = torch.cat((body_poses,poses_curr), dim=0)
body_poses = body_poses.long()
body_poses = body_poses.unsqueeze(0).unsqueeze(2).unsqueeze(2).to(device)
body_poses = poses_tokenizer.decode_tokens(body_poses).squeeze(2).squeeze().reshape(1,23,3,3).cpu()
all_params['pred_smpl_params']['body_pose'] = body_poses
smpl_params = (all_params['pred_smpl_params'])
smpl_output = smpl(**{k: v.float().cpu() for k,v in smpl_params.items()}, pose2rot=False)
for n in range(smpl_output.vertices.size(0)):
# Add all verts and cams to list
verts = smpl_output.vertices[n].detach().cpu().numpy()
img_size = all_params["img_size"].float()
pred_cam = all_params['pred_cam']
box_center = all_params["box_center"].float()
box_size = all_params["box_size"].float()
scaled_focal_length = pose_model_cfg.EXTRA.FOCAL_LENGTH / pose_model_cfg.MODEL.IMAGE_SIZE * img_size.max()
pred_cam_t_full = cam_crop_to_full(pred_cam, box_center, box_size, img_size, scaled_focal_length).detach().cpu().numpy()
cam_t = pred_cam_t_full[n]
all_verts.append(verts)
all_cam_t.append(cam_t)
except Exception as e:
print('Error in decoding human poses: ', end='')
print(e)
continue
try:
input_img = denormalize(mod_dict['rgb@224']['tensor'].squeeze(), mean=(IMAGENET_DEFAULT_MEAN), std=IMAGENET_DEFAULT_STD).permute(1,2,0).cpu()
except Exception as e:
print(e)
input_img = 1.
if 'tok_rgb' in mod_dict:
input_img = decode_tok_rgb(mod_dict, toks, key='tok_rgb')
# Render front view
input_img_overlay = 0.5* input_img[:,:,:3]
if len(all_verts) > 0:
misc_args = dict(
mesh_base_color=LIGHT_BLUE,
scene_bg_color=(1, 1, 1),
focal_length=scaled_focal_length,
)
cam_view = renderer.render_rgba_multiple(all_verts, cam_t=all_cam_t, render_res=img_size[n], **misc_args)
mask = (cam_view[:,:,0]<1.).astype(int)[:,:,None]
input_img_overlay = 0.5* input_img[:,:,:3] * (1-mask) + cam_view[:,:,:3] * mask
return input_img_overlay
def visualize_bboxes(img, bboxes_str, color=BOX_COLOR, thickness=2):
"""
Visualizes bounding boxes on the image.
Args:
img (np.array): Image to draw bounding boxes on.
bboxes_str (str): String containing bounding boxes in the format:
v0=1 v1=2 v2=3 v3=4 class_name ..., where
v0 is xmin, v1 is ymin, v2 is xmax, v3 is ymax
color (tuple): Color of the bounding box.
thickness (int): Thickness of the bounding box.
"""
if img is None:
img = 255 * np.ones((256,256,3), dtype=np.int32)
img = img.copy()
bboxes_str = bboxes_str.replace('[PAD]', '')
if len(bboxes_str.replace('[EOS]', '')) == 0:
return img
try:
bboxes = convert_string_to_bboxes(bboxes_str.replace(' [EOS]', ''))
except:
return img
for bbox in bboxes:
x_min, y_min, x_max, y_max, class_name = bbox
img_h, img_w = img.shape[0], img.shape[1]
x_min, x_max, y_min, y_max = int(x_min * img_w), int(x_max * img_w), int(y_min * img_h), int(y_max * img_h)
cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)
((text_width, text_height), _) = cv2.getTextSize(class_name.rstrip(), cv2.FONT_HERSHEY_SIMPLEX, 0.35, 1)
cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1)
cv2.putText(
img,
text=f"{class_name}",
org=(x_min, y_min - int(0.3 * text_height)),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.35,
color=TEXT_COLOR,
lineType=cv2.LINE_AA,
)
return img
def plot_text_in_square(ax, text, padding=0.5, fontsize=14, wrap_width=50):
"""
Plots text in a square.
Args:
ax (matplotlib.axes.Axes): Matplotlib axis to plot on
text (str): Text to plot
padding (float): Padding around the text
fontsize (int): Font size of the text
wrap_width (int): Width of the text to wrap
"""
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
if isinstance(text, list):
text = text[0]
text = text.replace('[PAD]', '')
# Wrap the text if necessary
wrapped_text = textwrap.fill(text, int(wrap_width))
# Add the padding
bbox_props = dict(boxstyle="square,pad=" + str(padding), facecolor="white", edgecolor="black")
# Add the text to the plot
ax.text(0.5, 0.5, wrapped_text, ha='center', va='center', fontsize=fontsize, bbox=bbox_props)
remove_ticks_and_labels(ax)
remove_spines(ax)
def text_to_pil_image(text, padding=0.5, fontsize=14, wrap_width=40, image_size=(512, 512)):
"""
Converts text to a PIL image.
Args:
text (str): Text to convert to image
padding (float): Padding around the text
fontsize (int): Font size of the text
wrap_width (int): Width of the text to wrap
image_size (tuple): Size of the output image (width, height)
Returns:
PIL.Image.Image: Generated image with the text
"""
fig, ax = plt.subplots(figsize=(image_size[0] / 100, image_size[1] / 100), dpi=100)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
if isinstance(text, list):
text = text[0]
text = text.replace('[PAD]', '')
# Wrap the text if necessary
wrapped_text = textwrap.fill(text, wrap_width)
# Add the padding
bbox_props = dict(boxstyle="square,pad=" + str(padding), facecolor="white", edgecolor="black")
# Add the text to the plot
ax.text(0.5, 0.5, wrapped_text, ha='center', va='center', fontsize=fontsize, bbox=bbox_props)
# Remove ticks, labels, and spines
ax.set_xticks([])
ax.set_yticks([])
for spine in ax.spines.values():
spine.set_visible(False)
# Convert the plot to a PIL image
fig.canvas.draw()
image = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
image = image.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return Image.fromarray(image)
def plot_modality(dec_dict, key, ax, figscale=4.0):
"""
Plots a single modality. Function name has a typo because of legacy reasons.
Args:
dec_dict (dict): Dictionary of decoded modalities
key (str): Key of the modality to plot
ax (matplotlib.axes.Axes): Matplotlib axis to plot on
figscale (float): Scaling factor for the figure (used to scale the caption box)
"""
modality = dec_dict[key]
k = get_transform_key(key)
if 'tok' in k or k == 'rgb' or k == 'human_poses' or k == 'color_palette':
ax.imshow(modality.clip(0,1))
elif k == 'caption':
plot_text_in_square(ax, modality, wrap_width=max(1,int(7*figscale))) # 7*figscale turns out to make caption box fit nicely
elif k == 't5_caption':
plot_text_in_square(ax, modality, wrap_width=max(1,int(7*figscale))) # 7*figscale turns out to make caption box fit nicely
elif k == 'metadata':
modality = ',\n'.join([f'{k}: {v:.2f}' if isinstance(v, float) else f'{k}: {v}' for k, v in modality.items()])
plot_text_in_square(ax, modality, wrap_width=max(1,int(7*figscale)), fontsize=11)
elif k == 'det':
bbox_img = visualize_bboxes(np.ones((224,224,3)), modality, thickness=2)
ax.imshow(bbox_img.clip(0,1))
def plot_conds_and_targets(cond_domains, target_domains, dec_dicts, save_path=None, fs_titles=15, figscale=4.0, dpi=100):
"""
Plots the conditioning and target modalities for a batch of samples.
Args:
cond_domains (list of str): List of conditioning domains
target_domains (list of str): List of target domains
dec_dicts (list of dicts): List of dictionaries containing the decoded conditioning and target modalities
save_path (str): Path to save the figure. If None, the figure is not saved but plotted instead.
fs_titles (int): Font size of the titles
figscale (float): Scaling factor for the figure size (minimum 4.0 for good results)
dpi (float): Dots per inch for the saved figure
"""
n_cond = len(cond_domains)
n_target = len(target_domains)
n_samples = len(dec_dicts)
ncols = n_samples + 1 if n_cond > 0 else n_samples
nrows = max(n_cond, n_target)
fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=(ncols*figscale, nrows*figscale), facecolor='white')
if nrows == 1 and ncols == 1:
ax = np.array([[ax]])
elif nrows == 1:
ax = np.expand_dims(ax, axis=0)
elif ncols == 1:
ax = np.expand_dims(ax, axis=1)
for cond_idx, cond_domain in enumerate(cond_domains):
axi = ax[cond_idx, 0]
plot_modality(dec_dicts[0], key=cond_domain, ax=axi)
axi.set_title(f'Conditioning: {MOD_PRINT_NAMES[cond_domain]}', fontsize=fs_titles)
# Remove spines that are not needed
if n_cond > 0:
for i in range(n_cond, nrows, 1):
remove_spines(ax[i, 0])
offset = 0 if n_cond == 0 else 1
for sample_idx, dec_dict in enumerate(dec_dicts):
for target_idx, target_domain in enumerate(target_domains):
axi = ax[target_idx, sample_idx+offset]
plot_modality(dec_dict, key=target_domain, ax=axi)
axi.set_title(f'{sample_idx+1}.{target_idx+1}: {MOD_PRINT_NAMES[target_domain]}', fontsize=fs_titles)
# Remove spines that are not needed
for i in range(n_target, nrows, 1):
remove_spines(ax[i, sample_idx+offset])
for ax in fig.axes:
remove_ticks_and_labels(ax)
plt.tight_layout()
if save_path is not None:
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.savefig(save_path, bbox_inches='tight', dpi=dpi) #, pil_kwargs={'quality': 30})
plt.close()
else:
plt.show()
def save_conds_and_targets(cond_domains, target_domains, dec_dicts, save_dir, sample_idx, suffix=None, vis_det=False):
"""
Saves the conditioning and target modalities for a batch of samples.
Args:
cond_domains (list of str): List of conditioning domains
target_domains (list of str): List of target domains
dec_dicts (list of dicts): List of dictionaries containing the decoded conditioning and target modalities
save_dir (str): Path to save the modalities
sample_idx (int): Unique index of the dataset sample
suffix (str): Suffix to append to the saved file names
vis_det (bool): Whether to visualize detection
"""
for variant_idx, dec_dict in enumerate(dec_dicts):
for domain in cond_domains + target_domains:
if variant_idx != 0 and domain in cond_domains:
continue
variant_suffix = f'_{variant_idx}' if domain in target_domains else ''
if suffix is not None:
variant_suffix += f'_{suffix}'
domain_save_dir = os.path.join(save_dir, 'conds' if domain in cond_domains else 'targets', domain)
os.makedirs(domain_save_dir, exist_ok=True)
if 'tok' in domain or domain in ['rgb', 'human_poses', 'color_palette']:
img = Image.fromarray((255 * dec_dict[domain]).astype(np.uint8))
if domain in ['tok_clip', 'tok_dinov2', 'tok_imagebind']:
img = img.resize((224,224), resample=Image.NEAREST)
save_path = os.path.join(domain_save_dir, f'{sample_idx:06d}{variant_suffix}.png')
img.save(save_path)
elif domain in ['caption', 'det', 'metadata']:
if vis_det:
save_path = os.path.join(domain_save_dir, f'{sample_idx:06d}{variant_suffix}.png')
bbox_img = visualize_bboxes(np.ones((512,512,3)), dec_dict[domain], thickness=2)
bbox_img = Image.fromarray((255 * bbox_img.clip(0,1)).astype(np.uint8))
bbox_img.save(save_path)
else:
# Save caption as text file
save_path = os.path.join(domain_save_dir, f'{sample_idx:06d}{variant_suffix}.txt')
with open(save_path, 'w') as f:
f.write(dec_dict[domain])
def plot_images_with_captions(images, captions, save_path=None, dpi=100, wrap_length=40, figscale=4.0):
"""
Plots images with their corresponding captions.
Parameters:
- images (torch.Tensor): A tensor of shape Bx3xHxW with images.
- captions (list): A list of B captions.
"""
assert len(images) == len(captions), "Number of images must match number of captions!"
B = len(images)
sqrt_B = int(B**0.5)
# Determine the number of rows and columns for subplots
nrows = sqrt_B
ncols = (B + nrows - 1) // nrows
fig, axarr = plt.subplots(nrows=nrows, ncols=ncols, figsize=(figscale*ncols, figscale*nrows))
axarr = np.array([axarr]) if nrows == 1 and ncols == 1 else axarr.ravel()
for i, ax in enumerate(axarr):
if i < B:
# Convert tensor image to numpy
image_np = images[i].permute(1, 2, 0).cpu().float().numpy()
ax.imshow(image_np)
# Place caption below the image
caption_wrapped = textwrap.fill(captions[i], width=wrap_length)
ax.text(0.5, -0.1, caption_wrapped, ha='center', va='top', transform=ax.transAxes, wrap=True)
ax.axis("off")
else:
ax.axis("off") # Hide any additional subplots
plt.subplots_adjust(hspace=0.6)
plt.tight_layout()
if save_path is not None:
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.savefig(save_path, bbox_inches='tight', dpi=dpi)
plt.close()
else:
plt.show() |