Spaces:
Runtime error
Runtime error
File size: 33,139 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import warnings
from functools import partial
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.cuda.amp import autocast
from einops import rearrange
# xFormers imports
try:
from xformers.ops import memory_efficient_attention, unbind
XFORMERS_AVAILABLE = True
except ImportError:
print("xFormers not available")
XFORMERS_AVAILABLE = False
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def build_2d_sincos_posemb(h, w, embed_dim=1024, temperature=10000.):
"""Sine-cosine positional embeddings as used in MoCo-v3
"""
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1. / (temperature ** omega)
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[None, :, :]
pos_emb = rearrange(pos_emb, 'b (h w) d -> b d h w', h=h, w=w, d=embed_dim)
return pos_emb
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1. + math.erf(x / math.sqrt(2.))) / 2.
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2)
with torch.no_grad():
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
return tensor
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
# type: (Tensor, float, float, float, float) -> Tensor
r"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \leq \text{mean} \leq b`.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
Examples:
>>> w = torch.empty(3, 5)
>>> nn.init.trunc_normal_(w)
"""
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# commit this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
if XFORMERS_AVAILABLE:
q, k, v = unbind(qkv, 2) # Each is of shape B x N x num_heads x C // num_heads
x = memory_efficient_attention(q, k, v)
x = x.reshape([B, N, C])
else:
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, context):
B, N, C = x.shape
_, M, _ = context.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
kv = self.kv(context).reshape(B, M, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.norm2 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, **kwargs):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class DecoderBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.norm1 = norm_layer(dim)
self.self_attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.cross_attn = CrossAttention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.query_norm = norm_layer(dim)
self.context_norm = norm_layer(dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x, context, **kwargs):
x = x + self.drop_path(self.self_attn(self.norm1(x)))
x = x + self.drop_path(self.cross_attn(self.query_norm(x), self.context_norm(context)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class LayerNorm(nn.Module):
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
From https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class ConvNeXtBlock(nn.Module):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch.
From https://github.com/facebookresearch/ConvNeXt/blob/main/models/convnext.py
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.norm = nn.LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ViTEncoder(nn.Module):
"""Transformer to map images / feature maps to latent features.
Args:
in_channels: Number of input channels.
patch_size: Patch size.
resolution: Image resolution.
dim_tokens: Transformer dimension.
depth: Number of transformer layers.
num_heads: Number of attention heads.
mlp_ratio: MLP ratio.
qkv_bias: If True, add bias to the qkv projection.
drop_rate: Dropout rate.
attn_drop_rate: Attention dropout rate.
drop_path_rate: Stochastic depth rate.
norm_layer: Normalization layer.
sincos_pos_emb: If True, use sine-cosine positional embedding.
learnable_pos_emb: If True, learn positional embedding.
patch_proj: If True, project image patches to tokens.
Consider disabling when encoding feature maps.
post_mlp: If True, add MLP after transformer.
See https://arxiv.org/abs/2110.04627.
ckpt_path: Path to checkpoint to load.
"""
def __init__(self, *,
in_channels: int = 3,
patch_size: int = 16,
resolution: int = 256,
dim_tokens: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb: bool = True,
learnable_pos_emb: bool = False,
patch_proj: bool = True,
post_mlp: bool = False,
ckpt_path: Optional[str] = None,
**ignore_kwargs):
super().__init__()
self.in_channels = in_channels
self.P_H, self.P_W = pair(patch_size)
self.H, self.W = pair(resolution)
self.dim_tokens = dim_tokens
self.patch_proj = patch_proj
assert (self.H % self.P_H == 0) and (self.W % self.P_W == 0), f'Image sizes {self.H}x{self.W} must be divisible by patch sizes {self.P_H}x{self.P_W}'
N_H = self.H // self.P_H
N_W = self.W // self.P_W
if sincos_pos_emb:
self.pos_emb = build_2d_sincos_posemb(h=N_H, w=N_W, embed_dim=self.dim_tokens)
self.pos_emb = nn.Parameter(self.pos_emb, requires_grad=learnable_pos_emb)
else:
self.pos_emb = nn.Parameter(torch.zeros(1, self.dim_tokens, N_H, N_W))
trunc_normal_(self.pos_emb, std=0.02)
# Image patches -> tokens projection
if patch_proj:
self.proj = nn.Conv2d(
in_channels=self.in_channels, out_channels=self.dim_tokens,
kernel_size=(self.P_H, self.P_W), stride=(self.P_H, self.P_W)
)
else:
self.proj = nn.Conv2d(
in_channels=self.in_channels, out_channels=self.dim_tokens,
kernel_size=1, stride=1
)
# Transformer blocks
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Block(dim=dim_tokens, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)
])
if post_mlp:
self.norm_mlp = norm_layer(dim_tokens)
self.post_mlp = Mlp(dim_tokens, int(mlp_ratio*dim_tokens), act_layer=nn.Tanh)
self.apply(self._init_weights)
for name, m in self.named_modules():
if isinstance(m, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
elif 'kv' in name:
# treat the weights of K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
if isinstance(m, nn.Conv2d):
if '.proj' in name:
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
w = m.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
if ckpt_path is not None:
print(f'Loading checkpoint from {ckpt_path}')
ckpt = torch.load(ckpt_path)
ckpt['model']['pos_emb'] = rearrange(ckpt['model']['pos_embed'][:,1:], 'b (nh nw) d -> b d nh nw', nh=N_H, nw=N_W)
ckpt['model']['proj.weight'] = ckpt['model']['patch_embed.proj.weight']
ckpt['model']['proj.bias'] = ckpt['model']['patch_embed.proj.bias']
msg = self.load_state_dict(ckpt['model'], strict=False)
print(msg)
def _init_weights(self, m: nn.Module) -> None:
"""Weight initialization"""
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self) -> int:
"""Get number of transformer layers."""
return len(self.blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""ViT encoder forward pass.
Args:
x: Input tensor of shape [B, C, H, W] or
[B, C, N_H, N_W] (patch projection disabled).
Returns:
Output tensor of shape [B, dim_tokens, N_H, N_W].
"""
# Create patches [B, C, H, W] -> [B, (H*W), C]
if self.patch_proj:
B, C, H, W = x.shape
assert (H % self.P_H == 0) and (W % self.P_W == 0), f'Image sizes {H}x{W} must be divisible by patch sizes {self.P_H}x{self.P_W}'
N_H, N_W = H // self.P_H, W // self.P_W # Number of patches in height and width
else:
B, C, N_H, N_W = x.shape
x = rearrange(self.proj(x), 'b d nh nw -> b (nh nw) d')
if self.pos_emb is not None:
# Create positional embedding
x_pos_emb = F.interpolate(self.pos_emb, size=(N_H, N_W), mode='bicubic', align_corners=False)
x_pos_emb = rearrange(x_pos_emb, 'b d nh nw -> b (nh nw) d')
# Add positional embeddings to patches
x = x + x_pos_emb
# Transformer forward pass
x = self.blocks(x)
if hasattr(self, 'post_mlp'):
with autocast(enabled = False):
x = x.float() + self.post_mlp(self.norm_mlp(x.float()))
# Reshape into 2D grid
x = rearrange(x, 'b (nh nw) d -> b d nh nw', nh=N_H, nw=N_W)
return x
class ViTDecoder(nn.Module):
"""Transformer to map latent features back to images / feature maps.
Args:
out_channels: Number of output channels.
patch_size: Patch size.
resolution: Image resolution.
dim_tokens: Transformer dimension.
depth: Number of transformer layers.
num_heads: Number of attention heads.
mlp_ratio: MLP ratio.
qkv_bias: If True, add bias to the qkv projection.
drop_rate: Dropout rate.
attn_drop_rate: Attention dropout rate.
drop_path_rate: Stochastic depth rate.
norm_layer: Normalization layer.
sincos_pos_emb: If True, use sine-cosine positional embedding.
learnable_pos_emb: If True, learn positional embedding.
patch_proj: If True, reproject tokens back to images.
Consider disabling when encoding feature maps.
post_mlp: If True, add MLP before transformer.
See https://arxiv.org/abs/2110.04627.
out_conv: If True, add two ConvNeXt blocks after transformer
to deal with patch checkerboard artifacts.
"""
def __init__(self, *,
out_channels: int = 3,
patch_size: int = 16,
resolution: int = 256,
dim_tokens: int = 768,
depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
drop_rate: float = 0.0,
attn_drop_rate: float = 0.0,
drop_path_rate: float = 0.0,
norm_layer: nn.Module = partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb: bool = True,
learnable_pos_emb: bool = False,
patch_proj: bool = True,
post_mlp: bool = False,
out_conv: bool = False,
**ignore_kwargs):
super().__init__()
self.out_channels = out_channels
self.P_H, self.P_W = pair(patch_size)
self.H, self.W = pair(resolution)
self.dim_tokens = dim_tokens
self.patch_proj = patch_proj
assert (self.H % self.P_H == 0) and (self.W % self.P_W == 0), f'Image sizes {self.H}x{self.W} must be divisible by patch sizes {self.P_H}x{self.P_W}'
N_H = self.H // self.P_H
N_W = self.W // self.P_W
if sincos_pos_emb:
self.pos_emb = build_2d_sincos_posemb(h=N_H, w=N_W, embed_dim=self.dim_tokens)
self.pos_emb = nn.Parameter(self.pos_emb, requires_grad=learnable_pos_emb)
else:
self.pos_emb = nn.Parameter(torch.zeros(1, self.dim_tokens, N_H, N_W))
trunc_normal_(self.pos_emb, std=0.02)
# Transformer blocks
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.Sequential(*[
Block(dim=dim_tokens, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)
])
# Tokens -> image output projection
if post_mlp:
self.norm_mlp = norm_layer(dim_tokens)
self.post_mlp = Mlp(dim_tokens, int(mlp_ratio*dim_tokens), act_layer=nn.Tanh)
if patch_proj:
self.out_proj = nn.Linear(dim_tokens, self.out_channels * self.P_H * self.P_W)
else:
self.out_proj = nn.Linear(dim_tokens, self.out_channels)
if out_conv:
self.out_conv = nn.Sequential(ConvNeXtBlock(dim=self.out_channels), ConvNeXtBlock(dim=self.out_channels))
self.apply(self._init_weights)
for name, m in self.named_modules():
if isinstance(m, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
elif 'kv' in name:
# treat the weights of K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
if isinstance(m, nn.Conv2d):
if '.proj' in name:
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
w = m.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def _init_weights(self, m: nn.Module) -> None:
"""Weight initialization"""
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def get_num_layers(self) -> int:
"""Get number of transformer layers."""
return len(self.blocks)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""ViT decoder forward pass.
Args:
x: Input tensor of shape [B, dim_tokens, N_H, N_W].
Returns:
Output tensor of shape [B, C, H, W] or
[B, C, N_H, N_W] (patch projection disabled).
"""
B, D, N_H, N_W = x.shape
# Reshape into 1D
x = rearrange(x, 'b d nh nw -> b (nh nw) d')
if self.pos_emb is not None:
# Create positional embedding
x_pos_emb = F.interpolate(self.pos_emb, size=(N_H, N_W), mode='bicubic', align_corners=False)
x_pos_emb = rearrange(x_pos_emb, 'b d nh nw -> b (nh nw) d')
# Add positional embeddings to patches
x = x + x_pos_emb
# Transformer forward pass
x = self.blocks(x)
# Project each token to (C * P_H * P_W)
if hasattr(self, 'post_mlp'):
x = x + self.post_mlp(self.norm_mlp(x))
x = self.out_proj(x)
# Reshape sequence of patches into image or output features
ph, pw = (self.P_H, self.P_W) if self.patch_proj else (1, 1)
x = rearrange(
x, 'b (nh nw) (c ph pw) -> b c (nh ph) (nw pw)',
nh=N_H, nw=N_W, ph=ph, pw=pw, c=self.out_channels
)
# Optional conv layers to reduce patch artifacts
if hasattr(self, 'out_conv'):
x = self.out_conv(x)
return x
# Encoder presets
def vit_s_enc(in_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False):
model = ViTEncoder(
in_channels=in_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=512,
depth=8,
num_heads=8,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
)
return model
def vit_b_enc(in_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False,
ckpt_path=None):
model = ViTEncoder(
in_channels=in_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
ckpt_path=ckpt_path,
)
return model
def vit_l_enc(in_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False):
model = ViTEncoder(
in_channels=in_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
)
return model
# Decoder presets
def vit_s_dec(out_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False,
out_conv=False):
model = ViTDecoder(
out_channels=out_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=512,
depth=8,
num_heads=8,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
out_conv=out_conv,
)
return model
def vit_b_dec(out_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False,
out_conv=False):
model = ViTDecoder(
out_channels=out_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=768,
depth=12,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
out_conv=out_conv,
)
return model
def vit_l_dec(out_channels,
patch_size,
resolution,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
sincos_pos_emb=True,
learnable_pos_emb=False,
patch_proj=True,
post_mlp=False,
out_conv=False):
model = ViTDecoder(
out_channels=out_channels,
patch_size=patch_size,
resolution=resolution,
dim_tokens=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
sincos_pos_emb=sincos_pos_emb,
learnable_pos_emb=learnable_pos_emb,
patch_proj=patch_proj,
post_mlp=post_mlp,
out_conv=out_conv,
)
return model
|