Spaces:
Runtime error
Runtime error
File size: 54,385 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gzip
import json
import random
from pathlib import Path
from typing import Optional, Tuple, List, Dict
from abc import ABC, abstractmethod
from PIL import Image
import cv2
import albumentations as A
import numpy as np
import torch
import torchvision.transforms.functional as TF
import torchvision.transforms as T
from einops import rearrange, repeat, reduce
from fourm.utils import to_2tuple
from fourm.utils.data_constants import (IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN,
IMAGENET_SURFACE_NORMAL_STD, IMAGENET_SURFACE_NORMAL_MEAN,
IMAGENET_INCEPTION_STD, SEG_IGNORE_INDEX, PAD_MASK_VALUE)
# The @-symbol is used to specify the resolution of a modality. Syntax: modality@resolution
def get_transform_key(mod_name):
return mod_name.split('@')[0]
def get_transform_resolution(mod_name, default_resolution, to_tuple=True):
res = int(mod_name.split('@')[1]) if '@' in mod_name else default_resolution
return to_2tuple(res) if to_tuple else res
def get_transform(mod_name, transforms_dict):
return transforms_dict.get(get_transform_key(mod_name), IdentityTransform())
def get_pil_resample_mode(resample_mode: str):
"""
Returns the PIL resampling mode for the given resample mode string.
Args:
resample_mode: Resampling mode string
"""
if resample_mode is None:
return None
elif resample_mode == "bilinear":
return Image.Resampling.BILINEAR if hasattr(Image, 'Resampling') else Image.BILINEAR
elif resample_mode == "bicubic":
return Image.Resampling.BICUBIC if hasattr(Image, 'Resampling') else Image.BICUBIC
elif resample_mode == "nearest":
return Image.Resampling.NEAREST if hasattr(Image, 'Resampling') else Image.NEAREST
else:
raise ValueError(f"Resample mode {resample_mode} is not supported.")
class UnifiedDataTransform(object):
def __init__(self, transforms_dict, image_augmenter, resample_mode: str = None, add_sizes: bool = False, **kwargs):
"""Unified data augmentation for FourM
Args:
transforms_dict (dict): Dict of transforms for each modality
image_augmenter (AbstractImageAugmenter): Image augmenter
resample_mode (str, optional): Resampling mode for PIL images (default: None -> uses default resampling mode for data type)
One out of ["bilinear", "bicubic", "nearest", None].
add_sizes (bool, optional): Whether to add crop coordinates and original size to the output dict
"""
self.transforms_dict = transforms_dict
self.image_augmenter = image_augmenter
self.resample_mode = resample_mode
self.add_sizes = add_sizes
def unified_image_augment(self, mod_dict, crop_settings):
"""Apply the image augmenter to all modalities where it is applicable
Args:
mod_dict (dict): Dict of modalities
crop_settings (dict): Crop settings
Returns:
dict: Transformed dict of modalities
"""
crop_coords, flip, orig_size, target_size, rand_aug_idx = self.image_augmenter(mod_dict, crop_settings)
mod_dict = {
k: self.transforms_dict[get_transform_key(k)].image_augment(
v, crop_coords=crop_coords, flip=flip, orig_size=orig_size,
target_size=get_transform_resolution(k, target_size), rand_aug_idx=rand_aug_idx,
resample_mode=self.resample_mode
)
for k, v in mod_dict.items()
}
if self.add_sizes:
mod_dict["crop_coords"] = torch.tensor(crop_coords)
mod_dict["orig_size"] = torch.tensor(orig_size)
return mod_dict
def __call__(self, mod_dict):
"""Apply the augmentation to a dict of modalities (both image based and sequence based modalities)
Args:
mod_dict (dict): Dict of modalities
Returns:
dict: Transformed dict of modalities
"""
crop_settings = mod_dict.pop("crop_settings", None)
mod_dict = {k: get_transform(k, self.transforms_dict).preprocess(v) for k, v in mod_dict.items()}
mod_dict = self.unified_image_augment(mod_dict, crop_settings)
mod_dict = {k: get_transform(k, self.transforms_dict).postprocess(v) for k, v in mod_dict.items()}
return mod_dict
def __repr__(self):
repr = "(UnifiedDataAugmentation,\n"
repr += ")"
return repr
class AbstractTransform(ABC):
@abstractmethod
def load(self, sample):
pass
@abstractmethod
def preprocess(self, sample):
pass
@abstractmethod
def image_augment(self, v, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
pass
@abstractmethod
def postprocess(self, v):
pass
class ImageTransform(AbstractTransform):
@staticmethod
def pil_loader(path: str) -> Image.Image:
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
# with open(path, 'rb') as f:
# img = Image.open(f)
img = Image.open(path)
return img
@staticmethod
def image_hflip(img: Image, flip: bool):
"""Crop and resize an image
:param img: Image to crop and resize
:param flip: Whether to flip the image
:return: Flipped image (if flip = True)
"""
if flip:
img = TF.hflip(img)
return img
@staticmethod
def image_crop_and_resize(img: Image, crop_coords: Tuple, target_size: Tuple, resample_mode: str = None):
"""Crop and resize an image
:param img: Image to crop and resize
:param crop_coords: Coordinates of the crop (top, left, h, w)
:param target_size: Coordinates of the resize (height, width)
:return: Cropped and resized image
"""
top, left, h, w = crop_coords
resize_height, resize_width = target_size
img = TF.crop(img, top, left, h, w)
resample_mode = get_pil_resample_mode(resample_mode)
img = img.resize((resize_height, resize_width), resample=resample_mode)
return img
class RGBTransform(ImageTransform):
def __init__(self, imagenet_default_mean_and_std=True, color_jitter=False, color_jitter_strength=0.5):
self.rgb_mean = IMAGENET_INCEPTION_MEAN if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_MEAN
self.rgb_std = IMAGENET_INCEPTION_STD if not imagenet_default_mean_and_std else IMAGENET_DEFAULT_STD
self.color_jitter = color_jitter
self.color_jitter_transform = self.random_color_jitter(color_jitter_strength)
def random_color_jitter(self, strength=0.5):
# Color Jitter from Pix2Seq and SimCLR
# Source: https://github.com/google-research/pix2seq/blob/main/data/data_utils.py#L114
t = T.Compose([
T.RandomApply([T.ColorJitter(brightness=0.8 * strength, contrast=0.8 * strength, saturation=0.8 * strength, hue=0.2 * strength)], p=0.8),
T.RandomApply([T.Grayscale(num_output_channels=3)], p=0.2),
])
return t
def rgb_to_tensor(self, img):
img = TF.to_tensor(img)
img = TF.normalize(img, mean=self.rgb_mean, std=self.rgb_std)
return img
def load(self, path):
# TODO: Instead of converting to RGB here, do it either in the preprocess or the postprocess step. Makes it compatible with wds dataloading.
sample = self.pil_loader(path)
return sample
def preprocess(self, sample):
sample = sample.convert('RGB')
if self.color_jitter:
sample = self.color_jitter_transform(sample)
return sample
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode=resample_mode)
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
sample = self.rgb_to_tensor(sample)
return sample
class DepthTransform(ImageTransform):
def __init__(self, standardize_depth=True):
self.standardize_depth = standardize_depth
def depth_to_tensor(self, img):
img = torch.Tensor( img / (2 ** 16 - 1.0) )
img = img.unsqueeze(0) # 1 x H x W
if self.standardize_depth:
img = self.truncated_depth_standardization(img)
return img
@staticmethod
def truncated_depth_standardization(depth, thresh: float = 0.1):
"""Truncated depth standardization
:param depth: Depth map
:param thresh: Threshold
:return: Robustly standardized depth map
"""
# Flatten depth and remove bottom and top 10% of values
trunc_depth = torch.sort(depth.reshape(-1), dim=0)[0]
trunc_depth = trunc_depth[int(thresh * trunc_depth.shape[0]): int((1 - thresh) * trunc_depth.shape[0])]
return (depth - trunc_depth.mean()) / torch.sqrt(trunc_depth.var() + 1e-6)
def load(self, path):
sample = self.pil_loader(path)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode=resample_mode)
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
sample = np.array(sample)
sample = self.depth_to_tensor(sample)
return sample
class NormalTransform(ImageTransform):
def __init__(self, standardize_surface_normals=False):
self.normal_mean = (0.5, 0.5, 0.5) if not standardize_surface_normals else IMAGENET_SURFACE_NORMAL_MEAN
self.normal_std = (0.5, 0.5, 0.5) if not standardize_surface_normals else IMAGENET_SURFACE_NORMAL_STD
def normal_to_tensor(self, img):
img = TF.to_tensor(img)
img = TF.normalize(img, mean=self.normal_mean, std=self.normal_std)
return img
def load(self, path):
sample = self.pil_loader(path)
return sample
def preprocess(self, sample):
return sample
def image_hflip(self, img: Image, flip: bool):
if flip:
img = TF.hflip(img)
flipped_np = np.array(img)
flipped_np[:, :, 0] = 255 - flipped_np[:, :, 0]
img = Image.fromarray(flipped_np)
return img
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode=resample_mode)
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
sample = self.normal_to_tensor(sample)
return sample
class SemsegTransform(ImageTransform):
def __init__(self, scale_factor=1.0, shift_idx_by_one=False, id_mapping: Optional[Dict] = None, select_channel=None):
self.scale_factor = scale_factor
self.shift_idx_by_one = shift_idx_by_one
self.id_mapping = id_mapping
self.select_channel = select_channel
def map_semseg_values(self, sample):
sample = np.asarray(sample)
mapping_fn = lambda x: self.id_mapping.get(x, x)
sample = np.vectorize(mapping_fn)(sample)
sample = Image.fromarray(sample, mode='P')
return sample
def semseg_to_tensor(self, img):
# Rescale to scale factor
if self.scale_factor != 1.0:
target_height, target_width = int(img.height * self.scale_factor), int(img.width * self.scale_factor)
img = img.resize((target_width, target_height))
# Using pil_to_tensor keeps it in uint8, to_tensor converts it to float (rescaled to [0, 1])
img = TF.pil_to_tensor(img).to(torch.long).squeeze(0)
# 255->0, 254->0, all else shifted up by one
return img
def load(self, path):
sample = self.pil_loader(path)
if self.select_channel is not None:
sample = sample.split()[self.select_channel]
return sample
def preprocess(self, sample):
sample = sample.convert('P')
if self.id_mapping is not None:
sample = self.map_semseg_values(sample)
if self.shift_idx_by_one:
sample = np.asarray(sample)
sample = sample + 1
sample = Image.fromarray(sample, mode='P')
return sample
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
# Value for padding with TF.crop is always 0.
# Override resampling mode to 'nearest' for semseg
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode='nearest')
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
img = self.semseg_to_tensor(sample)
return img
class SAMInstanceTransform(AbstractTransform):
def __init__(self, mask_size=64, max_instance_n=20, bbox_area_threshold=0.0005):
self.mask_size = mask_size
self.max_instance_n = max_instance_n
self.bbox_area_threshold = bbox_area_threshold
def get_bbox(self, instance):
""" Gets bounding box of the given instance
"""
min_h, max_h = instance[:,:,1].min(), instance[:,:,1].max()
min_w, max_w = instance[:,:,0].min(), instance[:,:,0].max()
return [min_h, min_w, max_h, max_w]
def extend_instance_points(self, instance, border_fn):
""" Given an instance and a border function `border_fn`, extends the instance points with crossing points between the instance and
the crop borders. The crossing points are obtained using border_fn.
"""
p = instance[:,0]
p_next = np.roll(p, (-1), axis=(0))
final_points = []
for x, xn in zip(p, p_next):
final_points.append(x)
for r in border_fn(x, xn):
final_points.append(r.astype(np.int32))
p = np.stack(final_points)
return p[:,None]
def remove_redundant_lines(self, orig_instance, instance):
""" Removes the redundant lines added during cropping.
"""
final_points = []
for p in instance:
distance = cv2.pointPolygonTest(orig_instance, (p[0,0].item(), p[0,1].item()), measureDist=True)
if distance >= 0:
final_points.append(p[0])
return np.stack(final_points)[:,None]
def get_border_functions(self, crop_points):
""" Creates and returns a function `fn` using crop region coordinates given in crop_points.
`fn` receives two input points x and xn and returns all the crossing points between the line connecting
x and xn, and the borders of the cropping rectangle.
"""
p = crop_points[:,0]
p_next = np.roll(p, (-1), axis=(0))
def fn(x, xn):
output = []
c_diff = p_next - p
x_diff = x - xn
for diff, c in zip(c_diff, p):
A = np.array([
[diff[0], x_diff[0]],
[diff[1], x_diff[1]]
])
b = x - c
try:
lmbda = np.linalg.solve(A, b)
if 0 <= lmbda[0] <= 1 and 0 <= lmbda[1] <= 1:
output.append(lmbda[1] * xn + (1-lmbda[1]) * x)
except:
continue
return output
return fn
def crop_sample(self, sample, crop_coords):
""" Crop the sample using crop coordinates.
"""
top, left, h, w = crop_coords
crop_region = (left, top, left + w, top + h)
crop_points = np.array([
[crop_region[0], crop_region[1]],
[crop_region[2], crop_region[1]],
[crop_region[2], crop_region[3]],
[crop_region[0], crop_region[3]],
])[:,None]
border_functions = self.get_border_functions(crop_points)
cropped_sample = []
for instance in sample:
instance = self.extend_instance_points(instance, border_functions)
filter_condition = (
(instance[:, :, 0] > crop_region[0]) &
(instance[:, :, 0] < crop_region[2]) &
(instance[:, :, 1] > crop_region[1]) &
(instance[:, :, 1] < crop_region[3])
)
if not np.any(filter_condition):
continue
instance_copy = instance.copy()
instance_copy[:, :, 0] = np.clip(instance[:, :, 0], a_min=crop_region[0], a_max=crop_region[2])
instance_copy[:, :, 1] = np.clip(instance[:, :, 1], a_min=crop_region[1], a_max=crop_region[3])
instance_copy = self.remove_redundant_lines(instance, instance_copy)
instance_copy[:, :, 0] -= crop_region[0]
instance_copy[:, :, 1] -= crop_region[1]
cropped_sample.append(instance_copy)
return cropped_sample
def resize_sample(self, sample, original_size, target_size):
""" Resize the sample
"""
width_scale = target_size[1] / original_size[1]
height_scale = target_size[0] / original_size[0]
resized_sample = []
for instance in sample:
instance_copy = instance.copy()
instance_copy[:, :, 0] = np.round(width_scale * instance_copy[:, :, 0])
instance_copy[:, :, 1] = np.round(height_scale * instance_copy[:, :, 1])
resized_sample.append(instance_copy)
return resized_sample
def remove_tiny_instances(self, sample, image_size):
""" Remove instances that have an area ratio smaller than `bbox_area_threshold`.
"""
filtered_sample = []
for instance in sample:
min_h, min_w, max_h, max_w = self.get_bbox(instance)
bbox_area_ratio = (max_h - min_h) * (max_w - min_w) / (image_size[0] * image_size[1])
if bbox_area_ratio < self.bbox_area_threshold:
continue
filtered_sample.append(instance)
return filtered_sample
def hflip(self, sample, width):
""" Horizontal flipping the instances in a sample.
"""
flipped_sample = []
for instance in sample:
instance_copy = instance.copy()
instance_copy[:, :, 0] = width - instance_copy[:, :, 0]
flipped_sample.append(instance_copy)
return flipped_sample
def get_binary_masks(self, sample):
""" Creates the binary mask of each instance in the sample.
"""
if self.max_instance_n is None:
max_instance_n = len(sample)
else:
max_instance_n = self.max_instance_n
masks = np.zeros((max_instance_n, self.mask_size, self.mask_size))
bboxes = np.zeros((max_instance_n, 4))
valid = np.full(max_instance_n, False)
for i, instance in enumerate(sample):
bbox = self.get_bbox(instance)
min_h, min_w, max_h, max_w = bbox
instance_copy = instance.copy()
mask = np.zeros((self.mask_size, self.mask_size), dtype=np.uint8)
instance_copy[:,:,0] = (instance_copy[:,:,0] - min_w) / (max_w - min_w) * self.mask_size
instance_copy[:,:,1] = (instance_copy[:,:,1] - min_h) / (max_h - min_h) * self.mask_size
cv2.drawContours(mask, [instance_copy], 0, (255), thickness=cv2.FILLED)
masks[i] = mask / 255.0
bboxes[i] = np.array(bbox)
valid[i] = True
return masks, bboxes, valid
def load(self, path):
sample = np.load(path, allow_pickle=True)
return sample
def preprocess(self, sample):
if self.max_instance_n is None or len(sample) <= self.max_instance_n:
indecies = np.arange(len(sample))
else:
indecies = np.random.choice(len(sample), size=self.max_instance_n, replace=False)
return [p['points'] for i, p in enumerate(sample) if i in indecies]
def image_augment(self, v, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
v = self.crop_sample(v, crop_coords)
_, _, h, w = crop_coords
v = self.resize_sample(v, (h, w), target_size)
v = self.remove_tiny_instances(v, target_size)
if flip:
v = self.hflip(v, target_size[0])
return v
def postprocess(self, sample):
sample, bboxes, valid = self.get_binary_masks(sample)
return {
'instance': torch.from_numpy(sample).to(torch.float32),
'bbox': torch.from_numpy(bboxes).to(torch.float32),
'valid': torch.from_numpy(valid)
}
class MaskTransform(ImageTransform):
def __init__(self, mask_pool_size=1):
assert isinstance(mask_pool_size, int)
self.mask_pool_size = mask_pool_size # Use to expand masks
def mask_to_tensor(self, img):
mask = TF.to_tensor(img)
if self.mask_pool_size > 1:
mask = reduce(mask, 'c (h1 h2) (w1 w2) -> c h1 w1', 'min', h2=self.mask_pool_size, w2=self.mask_pool_size)
mask = repeat(mask, 'c h1 w1 -> c (h1 h2) (w1 w2)', h2=self.mask_pool_size, w2=self.mask_pool_size)
return (mask == 1.0)
def load(self, path):
sample = self.pil_loader(path)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, img, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
# Override resampling mode to 'nearest' for masks
img = self.image_crop_and_resize(img, crop_coords, target_size, resample_mode='nearest')
img = self.image_hflip(img, flip)
return img
def postprocess(self, sample):
sample = self.mask_to_tensor(sample)
return sample
class TokTransform(AbstractTransform):
def __init__(self):
pass
def load(self, path):
sample = np.load(path).astype(int)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, v, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
if rand_aug_idx is None:
raise ValueError("Crop settings / augmentation index are missing but a pre-tokenized modality is being used")
v = torch.tensor(v[rand_aug_idx])
return v
def postprocess(self, sample):
return sample
class DetectionTransform(AbstractTransform):
def __init__(self, det_threshold=0.6, det_max_instances=None, bbox_order='dist_to_orig', coord_bins=1000, min_visibility=0.0, return_raw=False):
self.det_threshold = det_threshold
self.det_max_instances = det_max_instances
self.coord_bins = coord_bins
self.min_visibility = min_visibility
self.return_raw = return_raw
if bbox_order == 'area':
self.bbox_order = self.order_bboxes_by_area
elif bbox_order == 'score':
self.bbox_order = self.order_bboxes_by_score
elif bbox_order == 'random':
self.bbox_order = self.shuffle_bboxes
else:
self.bbox_order = self.order_bboxes_by_dist_to_orig
@staticmethod
def order_bboxes_by_area(bboxes):
return sorted(bboxes, key=lambda x: (x[2] - x[0]) * (x[3] - x[1]), reverse=True)
@staticmethod
def order_bboxes_by_dist_to_orig(bboxes):
return sorted(bboxes, key=lambda x: x[0] ** 2 + x[1] ** 2)
@staticmethod
def order_bboxes_by_score(bboxes):
return sorted(bboxes, key=lambda x: x[5], reverse=True)
@staticmethod
def shuffle_bboxes(bboxes):
return sorted(bboxes, key=lambda x: random.random())
def convert_detection_instance(self, instances):
"""Convert instances dict to list of lists where each list takes the form:
[xmin, ymin, xmax, ymax, class_name, score]
"""
instances = [inst['boxes'] + [inst['class_name'], inst['score']] for inst in instances if inst['score'] >= self.det_threshold]
return instances
def bboxes_hflip(self, bboxes: List[Tuple], image_size: Tuple, flip: bool):
image_height, image_width = image_size
if flip:
bboxes = [tuple(A.bbox_hflip(bbox[:4], rows=image_height, cols=image_width)) + tuple(bbox[4:])
for bbox in bboxes]
return bboxes
def bboxes_crop_and_resize(self, bboxes: List[Tuple], crop_coords: Tuple, orig_size: Tuple):
"""Crop and resize bounding boxes
Args:
bboxes: Bounding boxes to crop and resize
crop_coords: Coordinates of the crop (top, left, h, w)
orig_size: Size of the original image
Returns:
Cropped and resized bounding boxes
"""
orig_height, orig_width = orig_size
top, left, h, w = crop_coords
xmin, ymin, xmax, ymax = left, top, left + w, top + h
bboxes = [tuple(A.bbox_crop(bbox[:4], x_min=xmin, y_min=ymin, x_max=xmax, y_max=ymax, rows=orig_height,
cols=orig_width)) + tuple(bbox[4:])
for bbox in bboxes]
bboxes = A.core.bbox_utils.filter_bboxes(bboxes, rows=h, cols=w, min_visibility=self.min_visibility)
# No need to resize, bounding boxes in albumentations format are scale invariant
return bboxes
def order_and_filter_bboxes(self, bboxes):
if self.det_max_instances is not None and len(bboxes) > self.det_max_instances:
bboxes = self.order_bboxes_by_score(bboxes)[:self.det_max_instances]
return self.bbox_order(bboxes)
def convert_bboxes_to_string(self, bboxes: List[Tuple]):
"""Convert bounding boxes to a string.
xmin, ymin, xmax, ymax are mapped to v0, v1, v2, v3 special tokens.
Args:
bboxes: Bounding boxes
Returns:
String representation of the bounding boxes
"""
# Remove score, quantize coordinates
bins = self.coord_bins
bboxes = [
[
f"v0={round(xmin * (bins - 1))}",
f"v1={round(ymin * (bins - 1))}",
f"v2={round(xmax * (bins - 1))}",
f"v3={round(ymax * (bins - 1))}",
cls,
]
for (xmin, ymin, xmax, ymax, cls, score) in bboxes
]
# Convert each bounding box to a string
bboxes = [' '.join(b) for b in bboxes]
# Convert the list to a str
return ' '.join(bboxes)
def load(self, path):
with open(path, 'r') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
instances = sample['instances']
return self.convert_detection_instance(instances)
def image_augment(self, bboxes: List[Tuple], crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx=None, resample_mode: str = None):
bboxes = self.bboxes_crop_and_resize(bboxes, crop_coords, orig_size)
bboxes = self.bboxes_hflip(bboxes, target_size, flip)
bboxes = self.order_and_filter_bboxes(bboxes)
return bboxes
def postprocess(self, bboxes):
if self.return_raw:
return bboxes
bboxes = self.convert_bboxes_to_string(bboxes)
return bboxes
class CaptionTransform(AbstractTransform):
def __init__(self, aligned_captions=True, no_aug=False):
self.aligned_captions = aligned_captions
self.no_aug = no_aug
def load(self, path):
# Caption can either be stored as .txt or .json.gz (in which case it's a list of dicts)
if path.endswith('.txt'):
sample = Path(path).read_text()
elif path.endswith('.json'):
with open(path, 'r') as f:
sample = json.load(f)
elif path.endswith('.json.gz'):
with gzip.open(path, 'rb') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
if isinstance(val, list) or isinstance(val, tuple):
if self.aligned_captions:
val = val[0] if rand_aug_idx is None else val[rand_aug_idx]
else:
val = random.choice(val) if not self.no_aug else val[0]
if isinstance(val, dict):
# If each caption is saved as a dict, extract the string
val = val["caption"]
assert isinstance(val, str)
return val
def postprocess(self, sample):
return sample
class CaptionEmbTransform(AbstractTransform):
def __init__(self, aligned_captions=True, no_aug=False):
self.aligned_captions = aligned_captions
self.no_aug = no_aug
def load(self, path):
if path.endswith('.npz'):
sample = np.load(path)
sample = {'emb': sample['emb'], 'mask_valid': sample['mask_valid']}
else:
raise ValueError(f"Invalid file format for caption embedding: {path}")
return sample
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
emb = val['emb']
mask_valid = val['mask_valid'].astype(bool)
num_sequences = emb.shape[0]
if num_sequences > 1:
if self.aligned_captions:
if rand_aug_idx is None:
emb, mask_valid = emb[0], mask_valid[0]
else:
emb, mask_valid = emb[rand_aug_idx], mask_valid[rand_aug_idx]
else:
if self.no_aug:
emb, mask_valid = emb[0], mask_valid[0]
else:
rand_idx = random.randint(0, num_sequences - 1)
emb, mask_valid = emb[rand_idx], mask_valid[rand_idx]
else:
emb, mask_valid = emb[0], mask_valid[0]
emb = emb[mask_valid] # Keep only valid embeddings
return emb
def postprocess(self, sample):
return torch.tensor(sample)
class MetadataTransform(AbstractTransform):
def __init__(self,
special_vmin: int = 0,
special_vmax: int = 999,
shuffle: bool = True,
random_trunc: bool = False,
return_chunks: bool = True,
return_raw: bool = False,
image_dim_bin_size: int = 32,):
"""Metadata transform that takes in a metadata dictionary and converts
it into a string, or list of strings (for chunked span masking).
Uses special tokens v1 to denote metadata types, and v0 for their values.
Args:
special_vmin: Minimum value for special tokens
special_vmax: Maximum value for special tokens
shuffle: Whether to shuffle the metadata order
random_trunc: Whether to randomly truncate the returned metadata
return_chunks: Whether to return a list of strings (for chunked span masking),
or a single string with all metadata concatenated
return_raw: Whether to return the raw metadata dictionary
"""
self.special_vmin = special_vmin
self.special_vmax = special_vmax
self.shuffle = shuffle
self.random_trunc = random_trunc
self.return_chunks = return_chunks
self.return_raw = return_raw
self.image_dim_bin_size = image_dim_bin_size
# Explicit map to make sure that additional entries do not change existing IDs
# TODO: Make this work with other text tokenizers
self.metadata_id_map = {
'original_width': 'v1=0',
'original_height': 'v1=1',
'caption_n_chars': 'v1=2',
'caption_n_words': 'v1=3',
'caption_n_sentences': 'v1=4',
'n_humans': 'v1=5',
'n_sam_instances': 'v1=6',
'n_coco_instances': 'v1=7',
'coco_instance_diversity': 'v1=8',
'colorfulness': 'v1=9',
'brightness': 'v1=10',
'contrast': 'v1=11',
'saturation': 'v1=12',
'entropy': 'v1=13',
'walkability': 'v1=14',
'objectness': 'v1=15',
'semantic_diversity': 'v1=16',
'geometric_complexity': 'v1=17',
'occlusion_score': 'v1=18',
'watermark_score': 'v1=19',
'aesthetic_score': 'v1=20',
}
self.id_metadata_map = {v: k for k, v in self.metadata_id_map.items()}
# Image-dimension modalities are binned into 32 bins
self.image_dim_modalities = ['original_height', 'original_width']
# Integer modalities that don't undergo any scaling (except for truncation)
self.metadata_int_modalities = [
'caption_n_chars', 'caption_n_words', 'caption_n_sentences',
'n_humans', 'n_sam_instances', 'n_coco_instances',
'coco_instance_diversity', 'semantic_diversity',
]
# Bin boundaries for manually defined metadata modalities.
# Lowest and highest bin boundaries are implicitly set to -inf and +inf
self.metadata_manual_bins = {
'watermark_score': [0.5],
'aesthetic_score': [4.5, 5.5],
}
# All other float or integer modalities that are binned into a defined number of bins
# Dictionary entries are (vmin, vmax, num_bins)
self.metadata_min_max_bins = {
'colorfulness': (0, 150, 50),
'brightness': (0, 255, 50),
'contrast': (0, 127, 50),
'saturation': (0, 255, 50),
'entropy': (0, 10, 50),
'walkability': (0, 1, 50),
'objectness': (0, 1, 50),
'geometric_complexity': (0, 0.75, 50),
'occlusion_score': (0, 0.25, 50),
}
def image_dim_to_string(self, metadata, key, bin_size=32):
value = metadata[key] // bin_size
value = max(self.special_vmin, min(value, self.special_vmax))
return f"{self.metadata_id_map[key]} v0={value}"
def int_metadata_to_string(self, metadata, key):
value = max(self.special_vmin, min(metadata[key], self.special_vmax))
return f"{self.metadata_id_map[key]} v0={value}"
def float_metadata_to_string(self, metadata, key, vmin, vmax, bins):
value = max(vmin, min(metadata[key], vmax))
value = (value - vmin) / (vmax - vmin)
value = int(value * (bins-1))
return f"{self.metadata_id_map[key]} v0={value}"
def manual_bin_metadata_to_string(self, metadata, key):
value = metadata[key]
bin_idx = 0
for bin_value in self.metadata_manual_bins[key]:
if value < bin_value:
break
bin_idx += 1
return f"{self.metadata_id_map[key]} v0={bin_idx}"
def metadata_to_string(self, metadata, keys: List[str] = None):
keys = list(metadata.keys()) if keys is None else keys
if self.shuffle:
# Randomly shuffle
random.shuffle(keys)
if self.random_trunc:
# Randomly truncate
keys = keys[:random.randint(1,len(keys))]
metadata_strings = []
for key in keys:
if key in self.image_dim_modalities:
# Image dimension modalities
metadata_str = self.image_dim_to_string(metadata, key, bin_size=self.image_dim_bin_size)
elif key in self.metadata_int_modalities:
# Integer modalities that don't undergo any scaling
metadata_str = self.int_metadata_to_string(metadata, key)
elif key in self.metadata_manual_bins:
# Metadata modalities for which bin boundaries are manually defined
metadata_str = self.manual_bin_metadata_to_string(metadata, key)
else:
# All other modalities
vmin, vmax, bins = self.metadata_min_max_bins[key]
metadata_str = self.float_metadata_to_string(metadata, key, vmin, vmax, bins)
metadata_strings.append(metadata_str)
if self.return_chunks:
return metadata_strings
else:
return ' '.join(metadata_strings)
def load(self, path):
with open(path, 'r') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx=None, resample_mode: str = None):
return val
def postprocess(self, metadata):
if self.return_raw:
return metadata
metadata_str = self.metadata_to_string(metadata)
return metadata_str
class HumanPoseTransform(AbstractTransform):
def __init__(self, coord_bins=1000, only_pose=False, return_raw=False):
self.coord_bins = coord_bins
self.return_raw = return_raw
self.only_pose = only_pose
def convert_humanpose_instance(self, instances, only_pose=False):
"""Convert instances dict to list of lists where each list takes the form:
[human, xmin xmax ymin ymax global val1 val2 ... val10 pose val1 val2 ... val 207 shape val1 val2 ... val10 camera val1 val2 val3 val4]
Like for bounding boxes, xmin, ymin, xmax, and ymax map to v0, v1, v2, and v3 respectively.
"""
if only_pose: # used for tokenizer training for pose
if len(instances) == 0:
return torch.zeros(207)
else:
return torch.from_numpy(np.array(instances['pred_smpl_params']['body_pose'][0]).flatten()).float()
if len(instances) == 0: #empty, i.e. there are no humans
return 'none'
for k in instances:
if k!='pred_smpl_params':
instances[k] = torch.from_numpy(np.array(instances[k]))
smpl_params = (instances['pred_smpl_params'])
for k in smpl_params:
smpl_params[k] = torch.from_numpy(np.array(smpl_params[k]))
total_num_instances = len(instances['bbox_xyxy'])
instances_converted = []
for ii in range(total_num_instances):
instances_converted.append(['human'] + (np.array(instances['bbox_xyxy'][ii]).flatten().tolist()) + ['global'] + (np.array(instances['pred_smpl_params']['global_orient'][ii]).flatten().tolist()) + ['pose'] + (instances['pose_tokenized'][ii].flatten().tolist()) + ['shape'] + (instances['pred_smpl_params']['betas'][ii].flatten().tolist()) + ['camera'] + (instances['pred_cam'][ii].flatten().tolist()))
return instances_converted
def humanposes_crop_and_resize(self, humanposes: List[Tuple], crop_coords: Tuple, orig_size: Tuple,):
"""Crop and resize human poses (and their bounding boxes)
"""
orig_height, orig_width = orig_size
top, left, h, w = crop_coords
humanposes_converted_resized = []
for instance in humanposes:
bbox_curr = instance[1:5]
bbox_curr = np.array(bbox_curr)
bbox_curr[0::2] = bbox_curr[0::2] / orig_width
bbox_curr[1::2] = bbox_curr[1::2] / orig_height
xmin, ymin, xmax, ymax = left, top, left + w, top + h
bbox_curr = A.bbox_crop(bbox_curr, x_min=xmin, y_min=ymin, x_max=xmax, y_max=ymax, rows=orig_height,
cols=orig_width)
bbox_curr = np.array(bbox_curr)
if np.all(bbox_curr[1::2]<0) or np.all(bbox_curr[0::2]<0): #bbox is out of range, remove it
continue
if np.all(bbox_curr[1::2]>1.0) or np.all(bbox_curr[0::2]>1.0): #bbox is out of range, remove it
continue
bbox_curr = np.clip(bbox_curr, a_min=0, a_max=1.)
instance[1:5] = bbox_curr
humanposes_converted_resized.append(instance)
# now return all instances, or none if there is no instance
if len(humanposes_converted_resized)>0:
pass
else: #no valid masks remains
return 'none'
humanpose_returned = humanposes_converted_resized
return humanpose_returned
def convert_humanposes_to_string(self, all_humanposes: List[Tuple]):
"""Convert humanposes to a string
range of global orientation: [-1, 1]
range of object pose: [-1, 1]
range of shape (betas): [-3, 3]
range of camera: [-1, 19]
"""
bins = self.coord_bins
instance_final_all = ''
for humanposes in all_humanposes:
human = humanposes[0]
bboxes = humanposes[1:5]
glob = humanposes[5]
global_orient = np.array(humanposes[6:15])
pose = humanposes[15]
pose_params = np.array(humanposes[16:24])
shape = humanposes[24]
shape_params = np.array(humanposes[25:35])
camera = humanposes[35]
camera_params = np.clip(np.array(humanposes[36:]), a_min=-1., a_max=19.)
bboxes_new = [
f"v0={round(bboxes[0] * (bins - 1))}",
f"v1={round(bboxes[1] * (bins - 1))}",
f"v2={round(bboxes[2] * (bins - 1))}",
f"v3={round(bboxes[3] * (bins - 1))}"]
global_orient = 499.5*global_orient
global_orient_new = []
for ii in range(len(global_orient)):
global_orient_curr = f"v0={round(global_orient[ii]+499.5)}"
global_orient_new.append(global_orient_curr)
pose_params_new = []
for ii in range(len(pose_params)):
if pose_params[ii]<512:
pose_params_curr = f"v0={round(pose_params[ii])}"
else:
pose_params_curr = f"v1={round(pose_params[ii] - 512)}"
pose_params_new.append(pose_params_curr)
shape_params = 166.5*shape_params
shape_params_new = []
for ii in range(len(shape_params)):
shape_params_curr = f"v0={round(shape_params[ii]+499.5)}"
shape_params_new.append(shape_params_curr)
camera_params = 49.95*camera_params
camera_params_new = []
for ii in range(len(camera_params)):
camera_params_curr = f"v0={round(camera_params[ii]+49.95)}"
camera_params_new.append(camera_params_curr)
#randomly shuffle everything except bbox part of the sequence
all_strings = [[pose]+pose_params_new, [glob] + global_orient_new, [camera] + camera_params_new, [shape] + shape_params_new ]
rand_perm = torch.randperm(4)
instance_final = [human] + bboxes_new + all_strings[rand_perm[0]] + all_strings[rand_perm[1]] + all_strings[rand_perm[2]] + all_strings[rand_perm[3]]
instance_final = ', '.join(instance_final)
instance_final = instance_final.replace(",", "")
instance_final_all = instance_final_all + instance_final + ' '
return instance_final_all
def load(self, path):
with open(path, 'r') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
instances = sample
instances = self.convert_humanpose_instance(instances, only_pose=self.only_pose)
return instances
def image_augment(self, humanposes: List[Tuple], crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx=None, resample_mode: str = None):
if humanposes=='none' or self.only_pose:
return humanposes
humanposes = self.humanposes_crop_and_resize(humanposes, crop_coords, orig_size)
return humanposes
def postprocess(self, humanposes):
if humanposes=='none' or self.only_pose:
return humanposes if not self.return_raw else []
if self.return_raw:
return humanposes
humanposes = self.convert_humanposes_to_string(humanposes)
return humanposes
class ColorPaletteTransform(AbstractTransform):
def __init__(self, coord_bins=1000, return_raw=False):
self.coord_bins = coord_bins
self.return_raw = return_raw
def convert_palette_instance(self, instances):
"""Convert colors to v0= v0= ...
"""
length = random.randint(1,7)
instances_converted = np.array(instances[0][str(length)]).flatten().tolist()
return instances_converted
def palette_hflip(self, palettes: List[Tuple], image_size: Tuple, flip: bool):
return palettes
def convert_palettes_to_string(self, all_palettes: List[Tuple]):
"""Convert palettes to a string
"""
colors = []
len_palettes = len(all_palettes)
colors.append(f"v1={round(len_palettes/3)}") # start with the length of the color palette to avoid confusion
for ii in range(len(all_palettes)):
color_new = f"v0={round(all_palettes[ii])}"
colors.append(color_new)
instance_final_all = colors
instance_final_all = ', '.join(instance_final_all)
instance_final_all = instance_final_all.replace(",", "")
return instance_final_all
def load(self, path):
with open(path, 'r') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
if self.return_raw:
return sample
instances = sample
instances = self.convert_palette_instance(instances)
return instances
def image_augment(self, palettes: List[Tuple], crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx=None, resample_mode: str = None):
return palettes
def postprocess(self, palettes):
if self.return_raw:
return palettes
palettes = self.convert_palettes_to_string(palettes)
return palettes
class SAMInstanceTokTransform(AbstractTransform):
def __init__(self, image_size=224, points_per_side=7, point_order='random'):
self.H, self.W = to_2tuple(image_size)
self.points_per_h, self.points_per_w = to_2tuple(points_per_side)
assert point_order in ['random', 'grid']
self.point_order = point_order
def get_query_points(self):
if self.point_order == 'grid':
# Create and cache grid query points
if not hasattr(self, 'grid_query_points'):
y, x = np.meshgrid(np.linspace(0, self.H, self.points_per_h + 2)[1:-1], np.linspace(0, self.W, self.points_per_w + 2)[1:-1])
grid = np.stack((x, y), axis=2).astype(np.int32)
self.grid_query_points = grid.reshape(-1, 2)
return self.grid_query_points
elif self.point_order == 'random':
# Randomly sample query points
y = np.random.randint(0, self.H, self.points_per_h)
x = np.random.randint(0, self.W, self.points_per_w)
return np.concatenate((x[:,None], y[:,None]), axis=1)
else:
raise ValueError(f"Query point order mode {self.point_order} is not supported.")
def get_target_tokens(self, sample, query_points):
instances_coords = [coords[0] for coords in sample['points']]
tokens = sample['token_ids']
bboxes = sample['bbox']
instance_tokens_per_qpoint = dict()
for point in query_points:
point = (int(point[0].item()), int(point[1].item()))
instance_tokens_per_qpoint[point] = []
for i, (coords, tok, bbox) in enumerate(zip(instances_coords, tokens, bboxes)):
# Calculate the distance from the query point to the instance
distance = cv2.pointPolygonTest(coords, point, measureDist=True)
# If the query point is inside the instance, add its corresponding token
if distance >= 0:
instance_tokens_per_qpoint[point].append((tok, bbox))
return instance_tokens_per_qpoint
def convert_target_tokens_to_string(self, target_tokens):
result_text = []
query_points = list(target_tokens.keys())
# Randomly shuffle query points order (mainly for grid order)
random.shuffle(query_points)
for point in query_points:
# Add query point coordinates to the string
result_text.append('point')
result_text.append(f'v0={point[1]}')
result_text.append(f'v1={point[0]}')
# Randomly shuffle the order of instance tokens per query point
random.shuffle(target_tokens[point])
if len(target_tokens[point]) == 0:
# If no instances tokens are found, add 'none' to the string
result_text.append('none')
else:
for tok, bbox in target_tokens[point]:
result_text.append(f'polygon')
# Add bounding box coordinates to the string
ymin, xmin, ymax, xmax = bbox.astype(np.int32)
result_text.extend([
f'v0={xmin}',
f'v1={ymin}',
f'v2={xmax}',
f'v3={ymax}',
])
# Add instance tokens ids to the string
for idx in tok.tolist():
if idx < 512:
result_text.append(f'v0={idx}')
else:
result_text.append(f'v1={idx - 512}')
return " ".join(result_text)
def load(self, path):
sample = np.load(path, allow_pickle=True)
return sample
def preprocess(self, sample):
for s in sample:
s['token_ids'] = s['token_ids'].astype(np.int32)
return sample
def image_augment(self, v, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
if rand_aug_idx is None:
raise ValueError("Crop settings / augmentation index are missing but a pre-tokenized modality is being used")
v = v[rand_aug_idx]
return v
def postprocess(self, sample):
query_points = self.get_query_points()
target_tokens = self.get_target_tokens(sample, query_points)
final_string = self.convert_target_tokens_to_string(target_tokens)
return final_string
class CropSettingsTransform(AbstractTransform):
def load(self, path):
sample = np.load(path)
return sample
def preprocess(self, sample):
raise NotImplementedError("CropSettingsTransform does not support preprocessing")
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
raise NotImplementedError("CropSettingsTransform is not meant to be used for image augmentation")
def postprocess(self, sample):
raise NotImplementedError("CropSettingsTransform does not support postprocessing")
class IdentityTransform(AbstractTransform):
def load(self, path):
raise NotImplementedError("IdentityTransform does not support loading")
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
return val
def postprocess(self, sample):
return sample
class JSONTransform(AbstractTransform):
def load(self, path):
if path.endswith('.json'):
with open(path, 'r') as f:
sample = json.load(f)
elif path.endswith('.json.gz'):
with gzip.open(path, 'rb') as f:
sample = json.load(f)
return sample
def preprocess(self, sample):
return sample
def image_augment(self, val, crop_coords: Tuple, flip: bool, orig_size: Tuple, target_size: Tuple,
rand_aug_idx: Optional[int], resample_mode: str = None):
return val
def postprocess(self, sample):
return sample |