File size: 1,717 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import hashlib

import collections.abc
from itertools import repeat
import torchvision.transforms.functional as TF

from fourm.utils.data_constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD


def denormalize(img, mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD):
    """
    Denormalizes an image.

    Args:
        img (torch.Tensor): Image to denormalize.
        mean (tuple): Mean to use for denormalization.
        std (tuple): Standard deviation to use for denormalization.
    """
    return TF.normalize(
        img.clone(),
        mean= [-m/s for m, s in zip(mean, std)],
        std= [1/s for s in std]
    )


def generate_uint15_hash(seed_str):
    """Generates a hash of the seed string as an unsigned int15 integer"""
    return int(hashlib.sha256(seed_str.encode('utf-8')).hexdigest(), 16) % (2**15)


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))

    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple