Spaces:
Runtime error
Runtime error
File size: 9,490 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# --------------------------------------------------------
# Based on BEiT, timm, DINO, DeiT code base
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit
# https://github.com/facebookresearch/dino
# --------------------------------------------------------
import json
import torch
from torch import optim as optim
def get_num_layer_for_vit(var_name, num_max_layer):
if var_name in ("cls_token", "mask_token", "pos_embed", "global_tokens"):
return 0
elif var_name.startswith("patch_embed"):
return 0
elif var_name.startswith("input_adapters") or var_name.startswith("encoder_embeddings"):
return 0
elif var_name.startswith("rel_pos_bias"):
return num_max_layer - 1
elif var_name.startswith("blocks") or (var_name.startswith("encoder.") and not var_name.startswith("encoder_norm")):
layer_id = int(var_name.split('.')[1])
return layer_id + 1
else:
return num_max_layer - 1
def get_num_layer_for_beit(var_name, num_max_layer):
if "embed" in var_name:
return 0
elif var_name in (
"cls_token", "mask_token", "pos_embed", "language_pos_embed",
"word_embeddings.weight", "vision_cls_token", "vision_pos_embed"
):
return 0
elif var_name.startswith("patch_embed"):
return 0
elif var_name.startswith("rel_pos_bias"):
return num_max_layer - 1
elif "layers." in var_name:
layer_id = int(var_name.split('layers.')[1].split('.')[0])
return layer_id + 1
else:
return num_max_layer - 1
def get_num_layer_for_fm(var_name, num_enc_layers, num_dec_layers, last_layer_mod_emb=False):
"""Layers go from 0 to (num_enc + num_dec + 1)
where 0 is the encoder embedding and (num_enc + num_dec + 1) is the projection following the decoder
"""
if var_name.startswith("encoder_embeddings"):
return 0
elif var_name.startswith("encoder."):
layer_id = int(var_name.split('.')[1])
return layer_id + 1
elif var_name in ("encoder_norm", "decoder_proj_context", "mask_token"):
return num_enc_layers
elif not last_layer_mod_emb and var_name.startswith("decoder_embeddings.") and "mod_emb" in var_name:
return num_enc_layers
elif var_name.startswith("decoder."):
layer_id = int(var_name.split('.')[1])
return num_enc_layers + layer_id + 1
else:
return num_enc_layers + num_dec_layers + 1
class LayerDecayValueAssigner(object):
def __init__(self, values, is_beit3=False):
self.values = values
self.is_beit3 = is_beit3
def get_scale(self, layer_id):
return self.values[layer_id]
def get_layer_id(self, var_name):
if self.is_beit3:
return get_num_layer_for_beit(var_name, len(self.values))
else:
return get_num_layer_for_vit(var_name, len(self.values))
class LayerDecayValueAssignerForFourM(object):
def __init__(self, values, num_enc_layers, num_dec_layers, last_layer_mod_emb=False):
self.values = values
self.num_enc_layers = num_enc_layers
self.num_dec_layers = num_dec_layers
self.last_layer_mod_emb = last_layer_mod_emb
assert len(values) == num_enc_layers + num_dec_layers + 2
def get_scale(self, layer_id):
return self.values[layer_id]
def get_layer_id(self, var_name):
return get_num_layer_for_fm(var_name, num_enc_layers=self.num_enc_layers, num_dec_layers=self.num_dec_layers, last_layer_mod_emb=self.last_layer_mod_emb)
def get_parameter_groups(
model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None,
decoder_decay=None, decoder_list=(), no_lr_scale_list=[]):
parameter_group_names = {}
parameter_group_vars = {}
for name, param in model.named_parameters():
# Remove wrapped module to be compatible with FSDP
name = name.replace("_fsdp_wrapped_module.", "")
if not param.requires_grad:
continue # frozen weights
# Assign weight decay values
# Only norm and bias terms should have no decay
# Previously, this checked if (param.shape) == 1 which is incompatible with FSDP which flattens all params
if "norm." in name or ".norm" in name or name.endswith(".bias") or name.endswith(".lookup_table_weight") or name.endswith(".gamma") or name in skip_list:
group_name = "no_decay"
this_weight_decay = 0.
elif decoder_decay is not None and (name.startswith("decoder.") or name in decoder_list):
group_name = "decoder_decay"
this_weight_decay = decoder_decay
else:
group_name = "decay"
this_weight_decay = weight_decay
# Assign layer ID for LR scaling
skip_scale = False
if get_num_layer is not None:
layer_id = get_num_layer(name)
group_name = "layer_%d_%s" % (layer_id, group_name)
if name in no_lr_scale_list:
skip_scale = True
group_name = f'{group_name}_no_lr_scale'
else:
layer_id = None
if group_name not in parameter_group_names:
if get_layer_scale is not None and not skip_scale:
scale = get_layer_scale(layer_id)
else:
scale = 1.
parameter_group_names[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name] = {
"weight_decay": this_weight_decay,
"params": [],
"lr_scale": scale
}
parameter_group_vars[group_name]["params"].append(param)
parameter_group_names[group_name]["params"].append(name)
print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
return list(parameter_group_vars.values())
def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None):
"""
Model can either be a single nn.Module, or a dictionary with {'model': model, 'balancer': balancer}.
"""
opt_lower = args.opt.lower()
weight_decay = args.weight_decay
try:
decoder_decay = args.decoder_decay
except:
decoder_decay = None
try:
no_lr_scale_list = args.no_lr_scale_list.split('-')
except:
no_lr_scale_list = []
def get_parameters(m):
if weight_decay and filter_bias_and_bn:
skip = {}
if skip_list is not None:
skip = skip_list
elif hasattr(m, 'no_weight_decay'):
skip = m.no_weight_decay()
decoder={}
if hasattr(m, 'decoder_weight_decay'):
decoder = m.decoder_weight_decay()
parameters = get_parameter_groups(m, weight_decay, skip, get_num_layer, get_layer_scale, decoder_decay, decoder, no_lr_scale_list)
wd = 0.
else:
parameters = m.parameters()
wd = weight_decay
return parameters, wd
if isinstance(model, torch.nn.Module):
parameters, weight_decay = get_parameters(model)
elif isinstance(model, dict):
print("WARNING: Weight decay assignment is skipped. All layers are assigned a weight decay value." )
parameters = [
{
"params": [p for n, p in model['model'].named_parameters()
if p.requires_grad],
"lr_scale": 1.,
},
{
"params": [p for n, p in model['balancer'].named_parameters()
if p.requires_grad],
"lr_scale": args.balancer_lr_scale,
},
]
opt_args = dict(lr=args.lr, weight_decay=weight_decay)
if hasattr(args, 'opt_eps') and args.opt_eps is not None:
opt_args['eps'] = args.opt_eps
if hasattr(args, 'opt_betas') and args.opt_betas is not None:
opt_args['betas'] = args.opt_betas
print("optimizer settings:", opt_args)
opt_split = opt_lower.split('_')
opt_lower = opt_split[-1]
if opt_lower == 'sgd' or opt_lower == 'nesterov':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
elif opt_lower == 'momentum':
opt_args.pop('eps', None)
optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
elif opt_lower == 'adam':
optimizer = optim.Adam(parameters, **opt_args)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, **opt_args)
else:
assert False and "Invalid optimizer"
raise ValueError
return optimizer |