Spaces:
Runtime error
Runtime error
File size: 1,349 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# --------------------------------------------------------
# Based on the timm code base
# https://github.com/huggingface/pytorch-image-models
# --------------------------------------------------------
""" Cross Entropy w/ smoothing or soft targets
Hacked together by / Copyright 2021 Ross Wightman
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
class LabelSmoothingCrossEntropy(nn.Module):
""" NLL loss with label smoothing.
"""
def __init__(self, smoothing=0.1):
super(LabelSmoothingCrossEntropy, self).__init__()
assert smoothing < 1.0
self.smoothing = smoothing
self.confidence = 1. - smoothing
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
logprobs = F.log_softmax(x, dim=-1)
nll_loss = -logprobs.gather(dim=-1, index=target.unsqueeze(1))
nll_loss = nll_loss.squeeze(1)
smooth_loss = -logprobs.mean(dim=-1)
loss = self.confidence * nll_loss + self.smoothing * smooth_loss
return loss.mean()
class SoftTargetCrossEntropy(nn.Module):
def __init__(self):
super(SoftTargetCrossEntropy, self).__init__()
def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor:
loss = torch.sum(-target * F.log_softmax(x, dim=-1), dim=-1)
return loss.mean()
|