File size: 65,802 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import Union, List, Optional

import numpy as np
import torch
from einops import rearrange, repeat
from torch import nn
import torch.nn.functional as F

from fourm.utils import get_sentinel_to_id_mapping, merge_span_masking
from fourm.utils.generation import cosine_schedule, linear_schedule, onex_temp_schedule, linear_temp_schedule, continue_schedule
from tqdm import tqdm
import copy



def empty_img_modality(mod_dict, key):
    # Input mask
    mod_dict[key]['input_mask'][:] = True
    
    # Target Mask
    mod_dict[key]['target_mask'][:] = False
    
    return mod_dict

def empty_seq_modality(mod_dict, key, s1_id=5):
    # To create an empty sequence, we suppose an input budget of 1, and the rest assigned to targets

    # Input tensor
    # Input is [S_1], target is [S_1] ...... [S_2]
    # (so [S_1] [S_1] ..... [S_2] when combined)
    mod_dict[key]['tensor'][:] = 0
    mod_dict[key]['tensor'][:,[0,1]] = s1_id # s1_id is id of the first sentinel token ([S_1])
    mod_dict[key]['tensor'][:,-1] = s1_id + 1

    # Input mask
    # Set first token to input (i.e. 0), rest to target (i.e. 1)
    mod_dict[key]['input_mask'][:] = True
    mod_dict[key]['input_mask'][:,0] = False
    
    # Target Mask
    mod_dict[key]['target_mask'] = ~mod_dict[key]['input_mask']

    # Decoder attn mask
    # WARNING: Not needed / used in GenerationSampler, where causal mask is enforced
    # First token is input, not part of target
    mod_dict[key]['decoder_attention_mask'][:] = 1
    mod_dict[key]['decoder_attention_mask'][:, 0] = 0

    return mod_dict

def empty_seq_emb_modality(mod_dict, key):
     # Tensor
    mod_dict[key]['tensor'] = torch.zeros_like(mod_dict[key]['tensor'])
    
    # Input mask
    mod_dict[key]['input_mask'] = torch.ones_like(mod_dict[key]['input_mask'])
    # It is crucial to specify the input mask as such, CFG won't work otherwise!
    mod_dict[key]['input_mask'][:, 0] = False
    
    # Target Mask
    mod_dict[key]['target_mask'] = torch.ones_like(mod_dict[key]['target_mask'])
    
    # Decoder attn mask
    mod_dict[key]['decoder_attention_mask'][:] = False
    
    return mod_dict
    

def init_empty_target_modality(mod_dict, modality_info, domain, batch_size, num_tokens, device):
    """
    Initializes an empty target modality dictionary for a given domain. 
    Used to initialize target modality dictionaries for generation. 
    """
    if modality_info[domain]['type'] == 'img':
        # Initialize mod dict
        mod_dict[domain] = {
            'tensor': torch.zeros((batch_size, num_tokens), dtype=torch.int64, device=device),
            'input_mask': torch.ones((batch_size, num_tokens), dtype=torch.bool, device=device),
            'target_mask': torch.zeros((batch_size, num_tokens), dtype=torch.bool, device=device),
        }
        # Set it to the correct values
        mod_dict = empty_img_modality(mod_dict, domain)

    elif modality_info[domain]['type'] in ['seq', 'seq_token', 'seq_emb']:
        # Initialize mod dict
        num_tokens = max(num_tokens, 2)
        mod_dict[domain] = {
            'tensor': torch.zeros((batch_size, num_tokens), dtype=torch.int32, device=device),
            'input_mask': torch.ones((batch_size, num_tokens), dtype=torch.bool, device=device),
            'target_mask': torch.zeros((batch_size, num_tokens), dtype=torch.bool, device=device),
            'decoder_attention_mask': torch.zeros((batch_size, num_tokens), dtype=torch.bool, device=device),
        }
        # Set it to the correct values
        if modality_info[domain]['type'] in ['seq', 'seq_token']:
            mod_dict = empty_seq_modality(mod_dict, domain)
        elif modality_info[domain]['type'] == 'seq_emb':
            mod_dict = empty_seq_emb_modality(mod_dict, domain)
    else:
        raise ValueError()
        
    return mod_dict

def init_full_input_modality(mod_dict, modality_info, domain, device, eos_id=3):
    if domain.startswith('rgb'):
        batch_size, _, H, W = mod_dict[domain]['tensor'].shape
        patch_size = modality_info[domain]['patch_size']
        num_tokens = (H // patch_size) * (W // patch_size)
        shape = (batch_size, num_tokens)
    else:
        shape = mod_dict[domain]['tensor'].shape
    if 'input_mask' not in mod_dict[domain]:
        mod_dict[domain]['input_mask'] = torch.zeros(shape, dtype=torch.bool, device=device)
    if 'target_mask' not in mod_dict[domain]:
        mod_dict[domain]['target_mask'] = torch.ones(shape, dtype=torch.bool, device=device)
    if 'decoder_attention_mask' not in mod_dict[domain]:
        mod_dict[domain]['decoder_attention_mask'] = torch.zeros(shape, dtype=torch.bool, device=device)

    if modality_info[domain]['type'] == 'img':
        mod_dict[domain]['input_mask'][:] = False
        mod_dict[domain]['target_mask'][:] = True

    elif modality_info[domain]['type'] in ['seq', 'seq_token']:
        if eos_id in mod_dict[domain]['tensor']:
            eos_idx = torch.where(mod_dict[domain]['tensor'] == eos_id)[1][0].item()
        else:
            mod_dict[domain]['tensor'][:,0] = eos_id
            eos_idx = 0
        mod_dict[domain]['input_mask'][:,:eos_idx+1] = False
        mod_dict[domain]['input_mask'][:,eos_idx+1:] = True
        mod_dict[domain]['target_mask'][:] = True

    elif modality_info[domain]['type'] in ['seq_emb']:
        # T5 caption has the valid mask saved alongside the embeddings
        mod_dict[domain]['input_mask'] = ~mod_dict[domain]['mask_valid']
        mod_dict[domain]['target_mask'] = torch.ones_like(mod_dict[domain]['mask_valid'])
        mod_dict[domain]['decoder_attention_mask'] = torch.zeros_like(mod_dict[domain]['mask_valid'])
        
    return mod_dict

def custom_text(sample, input_text, eos_token, key, device, text_tokenizer, target_max_len=50, start_token="[S_1]"):
    input_ids = text_tokenizer.encode(input_text).ids
    input_ids = torch.tensor(input_ids).unsqueeze(0)

    target_text = [start_token]
    target_text.extend(["[PAD]"] * (target_max_len - 2))
    target_text.append(eos_token)
    target_text = " ".join(target_text)
    target_ids = text_tokenizer.encode(target_text).ids
    target_ids = torch.tensor(target_ids).unsqueeze(0)

    all_ids = torch.cat([input_ids, target_ids], dim=1)

    input_mask = torch.cat([
        torch.zeros_like(input_ids, dtype=torch.bool), 
        torch.ones_like(target_ids, dtype=torch.bool),
        ], dim=1)

    target_mask = torch.cat([
        torch.ones_like(input_ids, dtype=torch.bool), 
        torch.zeros_like(target_ids, dtype=torch.bool),
        ], dim=1)

    sample[key] = {}
    sample[key]['tensor'] = all_ids.to(device)
    sample[key]['input_mask'] = input_mask.to(device)
    sample[key]['target_mask'] = target_mask.to(device)
    sample[key]['decoder_attention_mask'] = torch.zeros(all_ids.shape, dtype=torch.bool, device=device)

    return sample

def expand_to_batch(mod_dict, batch_size):
    for mod, d in mod_dict.items():
        for k, v in d.items():
            if k in ['tensor', 'input_mask', 'target_mask', 'decoder_attention_mask', 'mask_valid']:
                B = v.shape[0]
                if B == 1:
                    mod_dict[mod][k] = repeat(v, "1 ... -> b ...", b=batch_size)
                elif B != batch_size:
                    raise ValueError(f"Invalid batch size: {B} instead of {batch_size}")
                
    return mod_dict

def build_chained_generation_schedules(
        cond_domains: List[str], 
        target_domains: List[str],
        tokens_per_target: List[int],
        autoregression_schemes: List[str], 
        decoding_steps: List[int], 
        token_decoding_schedules: List[str],
        temps: List[float],
        temp_schedules: List[float],
        cfg_scales: List[float], 
        cfg_schedules: List[str],
        cfg_grow_conditioning: bool = False, 
        modality_info: Optional[dict] = None,
    ):
    """
    Builds a list of chained generation schedules, where each schedule is a tuple of the form:
    (target_modality, schema, number of decoded tokens, temperature, guidance_scale, cfg_cond_domains)

    Args:
        cond_domains: List of conditioning domains
        target_domains: List of target domains
        tokens_per_target: List of number of tokens to decode for each target domain
        autoregression_schemes: List of autoregression schemes for each target domain. maskgit, roar, or autoregressive
        decoding_steps: List of number of maskgit steps for each target domain (if applicable)
        token_decoding_schedules: List of maskgit token schedules for each target domain (if applicable). cosine or linear
        temps: List of starting temperatures for each target domain
        temp_schedules: List of temperature schedules for each target domain. linear, constant, or onex:{min_t}:{power}
        cfg_scales: List of classifier-free guidance scales for each target domain
        cfg_schedules: List of classifier-free guidance schedules for each target domain. constant or cosine
        cfg_grow_conditioning: After every completed modality, add them to classifier-free guidance conditioning
        modality_info: Dictionary with metadata for each modality, optionally used to verify that the schedule is compatible with the modality
    """
    
    # List of {target_modality, schema, number of decoded tokens, temperature, guidance_scale, cfg_cond_domains} dicts
    chained_schedules = []
    
    cond_domains = cond_domains.copy()
    
    for target_idx in range(len(target_domains)):
        
        scheme = autoregression_schemes[target_idx]
        target_domain = target_domains[target_idx]
        ntoks = tokens_per_target[target_idx]
        maskgit_token_schedule_name = token_decoding_schedules[target_idx]
        temp = temps[target_idx]
        temp_schedule_name = temp_schedules[target_idx]
        cfg_scale = cfg_scales[target_idx]
        cfg_schedule_name = cfg_schedules[target_idx]

        # Auto-regressive (caption, detection, ...)
        if scheme == 'autoregressive':
            chained_schedules.append({
                'target_domain': target_domain,
                'scheme': scheme,
                'num_tokens': None,
                'temperature': temp,
                'cfg_scale': cfg_scale,
                'cfg_cond_domains': cond_domains.copy()
            })
            continue

        # Use modality info for (optional) assert if provided
        if modality_info is not None:
            assert modality_info[target_domain]['type'] not in ['seq', 'seq_token'], f'Illegal autoregressive scheme {scheme} for target domain {target_domain}'

        # Token schedule
        if scheme == 'maskgit':
            # MaskGIT token schedule setup
            num_steps = decoding_steps[target_idx]
            if maskgit_token_schedule_name == 'cosine':
                token_schedule = cosine_schedule(num_steps, (ntoks))
            elif maskgit_token_schedule_name == 'linear':
                token_schedule = linear_schedule(num_steps, (ntoks))
            else:
                raise ValueError(f'Illegal MaskGIT token schedule {maskgit_token_schedule_name}')
        elif scheme == 'roar':
            # ROAR token schedule setup (one-by-one, but random order)
            num_steps = decoding_steps[target_idx]            
            token_schedule = linear_schedule(num_steps, ntoks)
        else:
            raise ValueError(f'Illegal decoding scheme {scheme}')
        
        # Temperature schedule
        if temp_schedule_name == 'linear':
            temp_schedule = linear_temp_schedule(temp, token_schedule)
        elif temp_schedule_name == 'constant':
            temp_schedule = temp * np.ones(num_steps)
        elif 'onex' in temp_schedule_name:
            # onex temperature schedule has to be formatted like onex:{min_t}:{power}
            min_t, power = [float(f) for f in temp_schedule_name.split(':')[1:]]
            temp_schedule = onex_temp_schedule(max_t=temp, min_t=min_t, token_schedule=token_schedule, power=power)
        else:
            raise ValueError(f'Illegal temperature schedule {temp_schedule_name}')

        # Classifier-free guidance scale schedule
        if cfg_schedule_name == 'constant':
            if isinstance(cfg_scale, float):
                cfg_schedule = cfg_scale * np.ones(num_steps)
            elif isinstance(cfg_scale, list):
                cfg_schedule = np.array(cfg_scale) * np.ones(num_steps).reshape(-1, 1)
        elif cfg_schedule_name == 'cosine':
            raise NotImplementedError()
        else:
            raise ValueError(f'Illegal guidance schedule {cfg_schedule_name}')

        # Concatenate schedule for this modality with previous ones
        schedule = [
            {
                'target_domain': target_domain,
                'scheme': scheme,
                'num_tokens': tok,
                'temperature': temp,
                'cfg_scale': cfg,
                'cfg_cond_domains': cond_domains.copy()
            }
            for tok, temp, cfg in zip(token_schedule, temp_schedule, cfg_schedule)
        ]
        chained_schedules.extend(schedule)
        
        # Optionally add this new modality to the ones affected by classifier-free guidance
        if cfg_grow_conditioning:
            cond_domains.append(target_domain)
            
    return chained_schedules


class GenerationSampler(nn.Module):
    """Sampler that wraps a trained 4M model for generation use cases.
    Implements standard autoregressive, MaskGIT, and ROAR generation schemes with chaining and weighted guidance."""

    def __init__(self, model):
        super().__init__()
        self.model = model


    def top_k_top_p_filtering(self, logits, top_k=0.0, top_p=0.0):
        # Compatible with batching
        # From https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
        if top_k > 0.0:
            if isinstance(top_k, int):
                k = min(top_k, logits.shape[-1])
            elif isinstance(top_k, float):
                k = min(int(top_k * logits.shape[-1]), logits.shape[-1])
            else:
                raise ValueError(f"Invalid value for top_k: {top_k}")

            # Remove all tokens with a probability less than the last token of the top-k
            indices_to_remove = logits < torch.topk(logits, k)[0][..., -1, None]
            logits[indices_to_remove] = float("-inf")

        if top_p > 0.0:
            sorted_logits, sorted_indices = torch.sort(logits, dim=1, descending=True)
            cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
            sorted_indices_to_remove = cum_probs > top_p
            # Shift the indices to the right to keep also the first token above the threshold
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0

            restore_indices = torch.argsort(sorted_indices, dim=-1)
            indices_to_remove = torch.gather(sorted_indices_to_remove, dim=-1, index=restore_indices)
            logits[indices_to_remove] = float("-inf")

        return logits

    def sample_tokens(self, logits, temperature=1.0, top_k=0.0, top_p=0.0):
        if np.isclose(temperature, 0, atol=1e-10):
            samples = torch.argmax(logits, dim=-1)
            # Since argmax is used, all sampled_probs will be 1 as we're selecting the max probability
            sampled_probs = torch.ones_like(samples, dtype=torch.float32)
        else:
            filtered_logits = self.top_k_top_p_filtering(logits, top_k, top_p)
            probs = F.softmax(filtered_logits / temperature, dim=-1)
            samples = torch.multinomial(probs, 1)[:, 0]
            sampled_probs = probs[torch.arange(len(samples)), samples]
        return samples, sampled_probs
    
    def sample_tokens_batched(self, logits, temperature=1.0, top_k=0.0, top_p=0.0):
        if logits.ndim > 2:
            B, N = logits.shape[0], logits.shape[1]
            logits = rearrange(logits, 'b n v -> (b n) v')
            samples, sampled_probs = self.sample_tokens(logits, temperature, top_k, top_p)
            samples = rearrange(samples, '(b n) -> b n', b=B, n=N)
            sampled_probs = rearrange(sampled_probs, '(b n) -> b n', b=B, n=N)
            return samples, sampled_probs
        else:
            return self.sample_tokens(logits, temperature, top_k, top_p)

    def select_tokens(self, logits, num_select, temperature=1.0, top_k=0.0, top_p=0.0, return_all_samples=False):
        samples, sampled_probs = self.sample_tokens(logits, temperature, top_k, top_p)
        top_indices = torch.topk(sampled_probs, num_select)[1]
        top_samples = samples[top_indices]
        if return_all_samples:
            return top_samples, top_indices, samples
        else:
            return top_samples, top_indices
        
    def select_tokens_batched(self, logits, num_select, temperature=1.0, top_k=0.0, top_p=0.0, return_all_samples=False):
            if logits.ndim > 2:
                samples, sampled_probs = self.sample_tokens_batched(logits, temperature, top_k, top_p) # both of shape (B, N)
                top_indices = torch.topk(sampled_probs, num_select, dim=-1)[1]
                # Need to switch to gather instead of indexing here
                top_samples = torch.gather(samples, dim=-1, index=top_indices)
                if return_all_samples:
                    return top_samples, top_indices, samples
                else:
                    return top_samples, top_indices
            else:
                return self.sample_tokens(logits, num_select, temperature, top_k, top_p, return_all_samples)


    def forward_mask_encoder_generation(self, encoder_mod_dict):
        """Modification of forward_mask_encoder adapted for generation, with support for batching
        """
        # Form input
        B = list(encoder_mod_dict.values())[0]['tensor'].shape[0]

        encoder_tokens_all, emb_all, encoder_mask_all, mod_mask_all = self.model.cat_encoder_tensors(encoder_mod_dict)
        # Take max num encoder of tokens (although assuming it's the same everywhere would be better)
        num_encoder_tokens = (~encoder_mask_all.reshape(B, -1)).sum(dim=1).max()

        # Add arange multiplied by small constant to mask so they get sorted in a deterministic way
        mask_arange = torch.arange(encoder_mask_all.shape[1], device=encoder_mask_all.device).unsqueeze(0) * 1e-6
        ids_shuffle = torch.argsort(encoder_mask_all + mask_arange, dim=1)
        # ids_restore = torch.argsort(ids_shuffle, dim=1)
        ids_keep = ids_shuffle[:, :num_encoder_tokens]

        encoder_tokens = torch.gather(encoder_tokens_all, dim=1,
                                      index=repeat(ids_keep, "b n -> b n d", d=encoder_tokens_all.shape[2]))
        encoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
        encoder_mask = torch.gather(encoder_mask_all, dim=1, index=ids_keep)
        mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)

        if self.model.num_register_tokens > 0:
            prompt_tokens = repeat(self.prompt_tokens, '() n d -> b n d', b=B)
            # We add prompt tokens at the beginning of the sequence
            encoder_tokens = torch.cat([prompt_tokens, encoder_tokens], dim=1)
            encoder_emb = torch.cat([torch.zeros_like(prompt_tokens), encoder_emb], dim=1)
            encoder_mask = torch.cat([torch.zeros((B, prompt_tokens.shape[1]), dtype=torch.bool, device=encoder_mask.device), encoder_mask], dim=1)
            mod_mask = torch.cat([torch.full((B, prompt_tokens.shape[1]), -1, dtype=torch.int16, device=mod_mask.device), mod_mask], dim=1)

        encoder_tokens[encoder_mask] = 0.
        encoder_emb[encoder_mask] = 0.
        mod_mask[encoder_mask] = -1
        # Mask could be of shape 'b n1 n2' but not needed for masked_fill
        # This means this mask can then be re-used for decoder cross-attention
        encoder_mask = rearrange(encoder_mask, 'b n2 -> b 1 n2')

        return encoder_tokens, encoder_emb, encoder_mask, mod_mask


    def forward_mask_decoder_maskgit(self, mod_dict, target_mod, seed=None):
        """Modification of forward_mask_decoder for MaskGIT generation, with support for batching
        """
        if seed is not None:
            torch.manual_seed(seed)
        d = mod_dict[target_mod]
        decoder_tokens_all = torch.zeros_like(d['x']) + self.model.mask_token
        emb_all = d['emb']
        decoder_mask_all = d['target_mask']
        B = decoder_tokens_all.shape[0] # Get batch size
        mod_mask_all = torch.full_like(d['ids'], self.model.modality_info[target_mod]['id'], dtype=torch.int16)
        mod_pos_all = torch.arange(d['x'].shape[1], device=d['x'].device).unsqueeze(0)
        mod_pos_all = repeat(mod_pos_all, '1 n -> b n', b=B) # Added: Expansion for batching
        num_decoder_tokens = (~decoder_mask_all[0]).sum()  # Adapted for batching / Assumes num_decoder_tokens is the same across the batch


        # Add arange multiplied by small constant to mask so they get sorted in a deterministic way
        mask_arange = torch.arange(decoder_mask_all.shape[1], device=decoder_mask_all.device).unsqueeze(0) * 1e-6
        ids_shuffle = torch.argsort(decoder_mask_all + mask_arange, dim=1)
        # ids_restore = torch.argsort(ids_shuffle, dim=1)
        ids_keep = ids_shuffle[:, :num_decoder_tokens]

        decoder_tokens = torch.gather(decoder_tokens_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=decoder_tokens_all.shape[2]))
        decoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
        decoder_mask = torch.gather(decoder_mask_all, dim=1, index=ids_keep)
        mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
        mod_pos = torch.gather(mod_pos_all, dim=1, index=ids_keep)

        decoder_tokens[decoder_mask] = 0.
        decoder_emb[decoder_mask] = 0.
        mod_mask[decoder_mask] = -1

        return decoder_tokens, decoder_emb, decoder_mask, mod_mask, mod_pos

    def forward_mask_decoder_roar(self, mod_dict, target_mod, num_select, seed=None):
        """Modification of forward_mask_decoder for ROAR generation, with support for batching
        """
        if seed is not None:
            torch.manual_seed(seed)
        d = mod_dict[target_mod]
        decoder_tokens_all = torch.zeros_like(d['x']) + self.model.mask_token
        emb_all = d['emb']
        decoder_mask_all = d['target_mask']
        B = decoder_tokens_all.shape[0] # Get batch size
        mod_mask_all = torch.full_like(d['ids'], self.model.modality_info[target_mod]['id'], dtype=torch.int16)
        mod_pos_all = torch.arange(d['x'].shape[1], device=d['x'].device).unsqueeze(0)
        mod_pos_all = repeat(mod_pos_all, '1 n -> b n', b=B) # Added: Expansion for batching
        # Only keep the first num_select tokens
        num_decoder_tokens = min(num_select, (~decoder_mask_all[0]).sum())  # Adapted for batching / Assumes num_decoder_tokens is the same across the batch
 
        # Add a small random number to the mask so they get sorted in a random way, but keeping the masked tokens first
        mask_rand = torch.rand(decoder_mask_all.shape[1], device=decoder_mask_all.device).unsqueeze(0) * 1e-6
        ids_shuffle = torch.argsort(decoder_mask_all + mask_rand, dim=1)
        # ids_restore = torch.argsort(ids_shuffle, dim=1)
        # Only keep the first num_select_tokens
        ids_keep = ids_shuffle[:, :num_decoder_tokens]

        decoder_tokens = torch.gather(decoder_tokens_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=decoder_tokens_all.shape[2]))
        decoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
        decoder_mask = torch.gather(decoder_mask_all, dim=1, index=ids_keep)
        mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
        mod_pos = torch.gather(mod_pos_all, dim=1, index=ids_keep)

        decoder_tokens[decoder_mask] = 0.
        decoder_emb[decoder_mask] = 0.
        mod_mask[decoder_mask] = -1

        return decoder_tokens, decoder_emb, decoder_mask, mod_mask, mod_pos

    def forward_mask_decoder_autoregressive(self, mod_dict, target_mod, seed=None):
        # Adapted for batching
        if seed is not None:
            torch.manual_seed(seed)
        # This is the concatenation part
        d = mod_dict[target_mod]
        decoder_ids_all = d['ids']
        emb_all = d['emb']
        decoder_mask_all = d['target_mask']
        B = decoder_ids_all.shape[0] # Get batch size
        mod_mask_all = torch.full_like(d['ids'], self.model.modality_info[target_mod]['id'], dtype=torch.int16)
        mod_pos_all = torch.arange(d['x'].shape[1], device=d['x'].device).unsqueeze(0)
        mod_pos_all = repeat(mod_pos_all, '1 n -> b n', b=B) 
        num_decoder_tokens = (~decoder_mask_all[0]).sum() # Adapted for batching, but assumes num_decoder_tokens is the same across the batch
 
        # Add arange multiplied by small constant to mask so they get sorted in a deterministic way
        mask_arange = torch.arange(decoder_mask_all.shape[1], device=decoder_mask_all.device).unsqueeze(0) * 1e-6
        ids_shuffle = torch.argsort(decoder_mask_all + mask_arange, dim=1)
        # ids_restore = torch.argsort(ids_shuffle, dim=1)
        ids_keep = ids_shuffle[:, :num_decoder_tokens]

        # Same as in forward_mask_decoder
        decoder_ids = torch.gather(decoder_ids_all, dim=1, index=ids_keep)
        decoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
        decoder_mask = torch.gather(decoder_mask_all, dim=1, index=ids_keep)
        mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
        mod_pos = torch.gather(mod_pos_all, dim=1, index=ids_keep)

        decoder_ids[decoder_mask] = 0
        decoder_emb[decoder_mask] = 0.
        mod_mask[decoder_mask] = -1

        return decoder_ids, decoder_emb, decoder_mask, mod_mask, mod_pos

    def merge_sequences(self, mod_dict, pred_ids, target_mod, text_tokenizer, default_sentinel="[S_1]"):
        device = mod_dict[target_mod]['tensor'].device
        # Get input ids
        input_ids = mod_dict[target_mod]['tensor'].squeeze().detach().cpu()
        input_ids = input_ids[mod_dict[target_mod]['input_mask'].squeeze().detach().cpu() == 0]
        input_ids = input_ids.tolist()

        if len(input_ids) == 0:
            input_ids = [text_tokenizer.get_vocab()[default_sentinel]]

        # Get predicted ids
        pred_ids = pred_ids.squeeze().detach().cpu().tolist()
        if isinstance(pred_ids, int):
            pred_ids = [pred_ids]

        # Get sentinel ids using the tokenizer
        sentinel_ids = set(get_sentinel_to_id_mapping(text_tokenizer).values())
        # Perform merging
        merged_ids = merge_span_masking(input_ids, pred_ids, sentinel_ids)
        merged_ids = torch.tensor(merged_ids).unsqueeze(0)
        # Create new dict
        new_input_mask = torch.zeros_like(merged_ids, dtype=torch.bool)
        new_target_mask = torch.ones_like(merged_ids, dtype=torch.bool)
        new_dict = {'tensor': merged_ids.to(device),
                    'input_mask': new_input_mask.to(device),
                    'target_mask': new_target_mask.to(device)}
        new_dict['decoder_attention_mask'] = torch.zeros_like(new_target_mask, dtype=torch.bool)

        mod_dict[target_mod] = new_dict
        return mod_dict
    
    def merge_sequences_batched(self, mod_dict, pred_ids, target_mod, text_tokenizer, default_sentinel="[S_1]"):
        # Unbatches and calls merge sequence per batch, then regroups it into a batch
        
        pad_id = text_tokenizer.token_to_id("[PAD]")
        
        B = mod_dict[target_mod]['tensor'].shape[0]
        device = mod_dict[target_mod]['tensor'].device

        tensors = torch.split(mod_dict[target_mod]['tensor'], 1)
        input_masks = torch.split(mod_dict[target_mod]['input_mask'], 1)
        pred_ids = torch.split(pred_ids, 1)

        input_dicts = []
        for t, im in zip(tensors, input_masks):
            d = {target_mod: {'tensor': t, 'input_mask': im}}
            input_dicts.append(d)

        merged_tensors = []
        merged_input_masks = []
        merged_target_masks = []
        merged_seq_lens = []
        for input_d, pi in zip(input_dicts, pred_ids):
            # Output of merge_sequences is mod_dict with modified target mod
            merged_d = self.merge_sequences(input_d, pi, target_mod, text_tokenizer, default_sentinel)[target_mod]
            merged_tensors.append(merged_d['tensor'])
            merged_input_masks.append(merged_d['input_mask'])
            merged_target_masks.append(merged_d['input_mask'])
            merged_seq_lens.append(merged_d['tensor'].shape[1])


        max_seq_len = max(merged_seq_lens)

        for i in range(len(merged_tensors)):
            # Right pad all tensors
            p1d = (0, max_seq_len - merged_seq_lens[i])
            merged_tensors[i] = F.pad(merged_tensors[i], p1d, "constant",pad_id)
            merged_input_masks[i] = F.pad(merged_input_masks[i], p1d, "constant", True)
            merged_target_masks[i] = F.pad(merged_target_masks[i], p1d, "constant", True)

        new_dict = {'tensor': torch.cat(merged_tensors, dim=0).to(device),
                    'input_mask': torch.cat(merged_input_masks, dim=0).to(device),
                    'target_mask': torch.cat(merged_target_masks, dim=0).to(device)}
        new_dict['decoder_attention_mask'] = torch.zeros_like(new_dict['target_mask'], dtype=torch.bool)

        mod_dict[target_mod] = new_dict
        return mod_dict

    def forward_enc_dec_maskgit_batched(self, mod_dict, target_mod, seed=None):
        # Encoder
        encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
                            for mod, d in mod_dict.items()
                            if mod in self.model.encoder_embeddings}
        encoder_tokens, encoder_emb, encoder_mask, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
        x = encoder_tokens + encoder_emb
        x = self.model.forward_encoder(x, encoder_mask)

        # Decoder
        context = self.model.decoder_proj_context(x) + encoder_emb
        decoder_mod_dict = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
        decoder_tokens, decoder_emb, decoder_mask, decoder_mod_mask, mod_pos = self.forward_mask_decoder_maskgit(decoder_mod_dict, target_mod, seed=seed)
        y = decoder_tokens + decoder_emb
        y = self.model.forward_decoder(y, context, encoder_mask, None)
        B, N, D = y.shape
        logits = self.model.forward_logits(y, decoder_mod_dict, decoder_mod_mask)[target_mod]
        logits = logits.reshape(B, N, -1)


        return logits, mod_pos

    def maskgit_step_batched(self, mod_dict, target_mod, num_select, temperature, top_k, top_p, seed=None):        
        logits, mod_pos = self.forward_enc_dec_maskgit_batched(mod_dict, target_mod, seed=seed)

        # MaskGIT sampling
        top_samples, top_indices = self.select_tokens_batched(logits, num_select,
                                                      temperature=temperature, top_k=top_k, top_p=top_p)
        # Update mod dict
        # We rely on gather / scatter for batched operations
        top_pos = torch.gather(mod_pos, -1, top_indices) # (B, num_select)
        mod_dict[target_mod]['tensor'] = torch.scatter(mod_dict[target_mod]['tensor'], -1, top_pos, top_samples)
        mod_dict[target_mod]['input_mask'] = torch.scatter(mod_dict[target_mod]['input_mask'], -1, top_pos, torch.zeros_like(top_samples, dtype=torch.bool))
        mod_dict[target_mod]['target_mask'] = torch.scatter(mod_dict[target_mod]['target_mask'], -1, top_pos, torch.ones_like(top_samples, dtype=torch.bool))

        return mod_dict

    def guided_maskgit_step_batched(self, mod_dict, target_mod, num_select, temperature, top_k, top_p, 
                                    conditioning=[], guidance_scale=1.0, seed=None, write_all_predictions=False):

        ### 1 - First pass, with conditioning
        logits_cond, _ = self.forward_enc_dec_maskgit_batched(mod_dict, target_mod, seed=seed)

        ### 2 - Second pass, without conditioning
        mod_dict_uncond = copy.deepcopy(mod_dict)
        for mod in conditioning:
            if self.model.modality_info[mod]['type'] in ['seq', 'seq_token']:
                mod_dict_uncond = empty_seq_modality(mod_dict_uncond, mod)
            elif self.model.modality_info[mod]['type'] in ['seq_emb']: 
                mod_dict_uncond = empty_seq_emb_modality(mod_dict_uncond, mod)
            else:
                mod_dict_uncond = empty_img_modality(mod_dict_uncond, mod)

        logits_uncond, mod_pos = self.forward_enc_dec_maskgit_batched(mod_dict_uncond, target_mod, seed=seed)

        ### 3 - Classifier-free guidance
        logits = logits_uncond + (logits_cond - logits_uncond) * guidance_scale

        ### 4 - MaskGIT sampling
        top_samples, top_indices, all_samples = self.select_tokens_batched(
            logits, num_select,
            temperature=temperature, top_k=top_k, top_p=top_p, 
            return_all_samples=True
        )

        ### 5 - Update mod dict
        # We rely on gather / scatter for batched operations
        top_pos = torch.gather(mod_pos, -1, top_indices) # (B, num_select)
        if write_all_predictions:
            mod_dict[target_mod]['tensor'][:, mod_pos] = all_samples
        else:
            mod_dict[target_mod]['tensor'] = torch.scatter(mod_dict[target_mod]['tensor'], -1, top_pos, top_samples)
        mod_dict[target_mod]['input_mask'] = torch.scatter(mod_dict[target_mod]['input_mask'], -1, top_pos, torch.zeros_like(top_samples, dtype=torch.bool))
        mod_dict[target_mod]['target_mask'] = torch.scatter(mod_dict[target_mod]['target_mask'], -1, top_pos, torch.ones_like(top_samples, dtype=torch.bool))

        return mod_dict

    def multi_guided_maskgit_step_batched(self, uncond_dict, cond_dicts, cond_weights, target_mod, num_select, 
                                          temperature, top_k, top_p, seed=None, write_all_predictions=False):

        ### 1 - Conditional forward passes (one for each guided condition)
        logits_cond_all = []
        for cond_dict in cond_dicts:
            logits_cond_i, _ = self.forward_enc_dec_maskgit_batched(cond_dict, target_mod, seed=seed)
            logits_cond_all.append(logits_cond_i)
        
        ### 2 - Unconditional forward pass
        logits_uncond, mod_pos = self.forward_enc_dec_maskgit_batched(uncond_dict, target_mod, seed=seed)

        ### 3 Conjunction of multiple conditions: l_uncond + sum_i{w_i * (l_cond_i - l_uncond)}
        # See https://arxiv.org/abs/2206.01714
        logits = logits_uncond + torch.stack([w * (logits_cond - logits_uncond) for w, logits_cond in zip(cond_weights, logits_cond_all)]).sum(dim=0)

        ### 4 - MaskGIT sampling
        top_samples, top_indices, all_samples = self.select_tokens_batched(
            logits, num_select,
            temperature=temperature, top_k=top_k, top_p=top_p, 
            return_all_samples=True
        )
        
        ### 5 - Update mod dict with newly generated tokens
        # We rely on gather / scatter for batched operations
        top_pos = torch.gather(mod_pos, -1, top_indices) # (B, num_select)
        if write_all_predictions:
            uncond_dict[target_mod]['tensor'][:, mod_pos] = all_samples
        else:
            uncond_dict[target_mod]['tensor'] = torch.scatter(uncond_dict[target_mod]['tensor'], -1, top_pos, top_samples)
        uncond_dict[target_mod]['input_mask'] = torch.scatter(uncond_dict[target_mod]['input_mask'], -1, top_pos, torch.zeros_like(top_samples, dtype=torch.bool))
        uncond_dict[target_mod]['target_mask'] = torch.scatter(uncond_dict[target_mod]['target_mask'], -1, top_pos, torch.ones_like(top_samples, dtype=torch.bool))
        # Update conditioning dicts
        for i in range(len(cond_dicts)):
            cond_dicts[i][target_mod]['tensor'] = torch.scatter(cond_dicts[i][target_mod]['tensor'], -1, top_pos, top_samples)
            cond_dicts[i][target_mod]['input_mask'] = torch.scatter(cond_dicts[i][target_mod]['input_mask'], -1, top_pos, torch.zeros_like(top_samples, dtype=torch.bool))
            cond_dicts[i][target_mod]['target_mask'] = torch.scatter(cond_dicts[i][target_mod]['target_mask'], -1, top_pos, torch.ones_like(top_samples, dtype=torch.bool))

        return uncond_dict, cond_dicts

    def forward_enc_dec_roar_batched(self, mod_dict, target_mod, num_select, seed=None):
        # Encoder
        encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
                            for mod, d in mod_dict.items()
                            if mod in self.model.encoder_embeddings}
        encoder_tokens, encoder_emb, encoder_mask, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
        x = encoder_tokens + encoder_emb
        x = self.model.forward_encoder(x, encoder_mask)

        # Decoder
        context = self.model.decoder_proj_context(x) + encoder_emb
        decoder_mod_dict = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
        decoder_tokens, decoder_emb, decoder_mask, decoder_mod_mask, mod_pos = self.forward_mask_decoder_roar(decoder_mod_dict, target_mod, num_select, seed=seed)
        y = decoder_tokens + decoder_emb
        y = self.model.forward_decoder(y, context, encoder_mask, None)
        B, N, D = y.shape
        logits = self.model.forward_logits(y, decoder_mod_dict, decoder_mod_mask)[target_mod]
        logits = logits.reshape(B, N, -1)

        return logits, mod_pos

    def roar_step_batched(self, mod_dict, target_mod, num_select, temperature, top_k, top_p, seed=None):
        """ROAR = Random Order Autoregression"""

        logits, mod_pos = self.forward_enc_dec_roar_batched(mod_dict, target_mod, num_select, seed=seed)

        # Simple sampling
        samples, sampled_probs = self.sample_tokens_batched(logits, temperature, top_k=top_k, top_p=top_p)

        # Update mod dict
        # We rely on scatter for batched operations
        select_pos = mod_pos
        mod_dict[target_mod]['tensor'] = torch.scatter(mod_dict[target_mod]['tensor'], -1, select_pos, samples)
        mod_dict[target_mod]['input_mask'] = torch.scatter(mod_dict[target_mod]['input_mask'], -1, select_pos, torch.zeros_like(samples, dtype=torch.bool))
        mod_dict[target_mod]['target_mask'] = torch.scatter(mod_dict[target_mod]['target_mask'], -1, select_pos, torch.ones_like(samples, dtype=torch.bool))

        return mod_dict

    def guided_roar_step_batched(self, mod_dict, target_mod, num_select, temperature, top_k, top_p, 
                                 conditioning=[], guidance_scale=1.0, seed=None):
        """ROAR = Random Order Autoregression"""

        ### 1 - First pass, with conditioning
        logits_cond, _ = self.forward_enc_dec_roar_batched(mod_dict, target_mod, num_select, seed=seed)

        ### 2 - Second pass, without conditioning
        mod_dict_uncond = copy.deepcopy(mod_dict)
        for mod in conditioning:
            if self.model.modality_info[mod]['type'] in ['seq', 'seq_token']:
                mod_dict_uncond = empty_seq_modality(mod_dict_uncond, mod)
            elif self.model.modality_info[mod]['type'] in ['seq_emb']: 
                mod_dict_uncond = empty_seq_emb_modality(mod_dict_uncond, mod)
            else:
                mod_dict_uncond = empty_img_modality(mod_dict_uncond, mod)

        logits_uncond, mod_pos = self.forward_enc_dec_roar_batched(mod_dict_uncond, target_mod, num_select, seed=seed)

        ### 3 - Classifier-free guidance
        logits = logits_uncond + (logits_cond - logits_uncond) * guidance_scale

        ### 4 - Simple sampling
        samples, sampled_probs = self.sample_tokens_batched(logits, temperature, top_k=top_k, top_p=top_p)

        ### 5 - Update mod dict
        # We rely on gather / scatter for batched operations
        select_pos = mod_pos
        mod_dict[target_mod]['tensor'] = torch.scatter(mod_dict[target_mod]['tensor'], -1, select_pos, samples)
        mod_dict[target_mod]['input_mask'] = torch.scatter(mod_dict[target_mod]['input_mask'], -1, select_pos, torch.zeros_like(samples, dtype=torch.bool))
        mod_dict[target_mod]['target_mask'] = torch.scatter(mod_dict[target_mod]['target_mask'], -1, select_pos, torch.ones_like(samples, dtype=torch.bool))

        return mod_dict

    def multi_guided_roar_step_batched(self, uncond_dict, cond_dicts, cond_weights, target_mod, 
                                       num_select, temperature, top_k, top_p, seed=None):

        ### 1 - Conditional forward passes (one for each guided condition)
        logits_cond_all = []
        for cond_dict in cond_dicts:
            logits_cond_i, _ = self.forward_enc_dec_roar_batched(cond_dict, target_mod, num_select, seed=seed)
            logits_cond_all.append(logits_cond_i)
        
        ### 2 - Unconditional forward pass
        logits_uncond, mod_pos = self.forward_enc_dec_roar_batched(uncond_dict, target_mod, num_select, seed=seed)

        ### 3 Conjunction of multiple conditions: l_uncond + sum_i{w_i * (l_cond_i - l_uncond)}
        # See https://arxiv.org/abs/2206.01714
        logits = logits_uncond + torch.stack([w * (logits_cond - logits_uncond) for w, logits_cond in zip(cond_weights, logits_cond_all)]).sum(dim=0)

        ### 4 - Simple sampling
        samples, sampled_probs = self.sample_tokens_batched(logits, temperature, top_k=top_k, top_p=top_p)
        
        ### 5 - Update mod dict
        # We rely on gather / scatter for batched operations
        select_pos = mod_pos
        uncond_dict[target_mod]['tensor'] = torch.scatter(uncond_dict[target_mod]['tensor'], -1, select_pos, samples)
        uncond_dict[target_mod]['input_mask'] = torch.scatter(uncond_dict[target_mod]['input_mask'], -1, select_pos, torch.zeros_like(samples, dtype=torch.bool))
        uncond_dict[target_mod]['target_mask'] = torch.scatter(uncond_dict[target_mod]['target_mask'], -1, select_pos, torch.ones_like(samples, dtype=torch.bool))
        # Update conditioning dicts
        for i in range(len(cond_dicts)):
            cond_dicts[i][target_mod]['tensor'] = torch.scatter(cond_dicts[i][target_mod]['tensor'], -1, select_pos, samples)
            cond_dicts[i][target_mod]['input_mask'] = torch.scatter(cond_dicts[i][target_mod]['input_mask'], -1, select_pos, torch.ones_like(samples, dtype=torch.bool))
            cond_dicts[i][target_mod]['target_mask'] = torch.scatter(cond_dicts[i][target_mod]['target_mask'], -1, select_pos, torch.zeros_like(samples, dtype=torch.bool))
        
        return uncond_dict, cond_dicts

    def autoregressive_step_batched(self, mod_dict, target_mod, temperature, top_k: Union[float, int], top_p: float,
                                    use_eos=True, eos_token=None, start_tokens=None, text_tokenizer=None, seed=None):

        # Encoder
        encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
                            for mod, d in mod_dict.items()
                            if mod in self.model.encoder_embeddings}
        encoder_tokens, encoder_emb, encoder_mask, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
        x = encoder_tokens + encoder_emb
        x = self.model.forward_encoder(x, encoder_mask) # B, N, D

        # Get batch size
        B = x.shape[0]

        # Decoder
        context = self.model.decoder_proj_context(x) + encoder_emb
        decoder_mod_dict = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
        decoder_ids, decoder_emb, decoder_mask, decoder_mod_mask, mod_pos = self.forward_mask_decoder_autoregressive(decoder_mod_dict, target_mod, seed=seed)
        device = decoder_ids.device
        seq_len = self.model.modality_info[target_mod]['max_tokens']

        if use_eos and eos_token is None:
            # The eos_token is the final sentinel token provided
            eos_token = decoder_ids[0][decoder_mask[0] == 0][-1] # Assumes the EOS token is the same for all
        if use_eos:
            eos_token = eos_token.to(device)

        # If no start_tokens, just use the beginning of the actual target (i.e., a sentinel token)
        out = decoder_ids[:, :1] if start_tokens is None else start_tokens.to(device)
        # Set decoder_tokens to None, we do not use them for decoding
        decoder_ids = None

        # If all samples of the batch have eos, return early
        if use_eos and (out == eos_token).any(dim=-1).all():
            return out

        y_emb = decoder_emb[:, :seq_len]
        seq_len = y_emb.shape[1]

        # Auto-regressive decoding and sampling
        for i in range(seq_len):
            cur_len = out.shape[1]
            # Convert ids into word embeddings and add corresponding posembs + modemb
            y = self.model.decoder_embeddings[target_mod].token_emb(out) + y_emb[:, :cur_len]
            # Build causal mask
            causal_mask = torch.ones((cur_len, cur_len), dtype=torch.bool, device=y.device).triu(1)
            causal_mask = repeat(causal_mask, "n1 n2 -> b n1 n2", b=B)
            
            y = self.model.forward_decoder(y, context, encoder_mask, causal_mask)
            logits = self.model.forward_logits(y, decoder_mod_dict, decoder_mod_mask[:, :cur_len])[target_mod]
            logits = rearrange(logits, "(b n) d -> b n d", b=B, n=cur_len)
            last_logits = logits[:, -1]

            # Sample token for the newly generated logit
            if np.isclose(temperature, 0, atol=1e-10):
                sample = torch.argmax(last_logits, dim=-1, keepdim=True)
            else:
                filtered_logits = self.top_k_top_p_filtering(last_logits, top_k, top_p)
                probs = F.softmax(filtered_logits / temperature, dim=-1)
                sample = torch.multinomial(probs, 1)
            out = torch.cat((out, sample), dim=-1)

            if use_eos and (out == eos_token).any(dim=-1).all():
                break

        mod_dict = self.merge_sequences_batched(mod_dict, out, target_mod, text_tokenizer)

        return mod_dict

    def guided_autoregressive_step_batched(self, mod_dict, target_mod, temperature, top_k: Union[float, int], top_p: float,
                                           use_eos=True, eos_token=None, start_tokens=None, text_tokenizer=None, 
                                           conditioning=[], guidance_scale=1.0, seed=None):

         ### 1 - Encoder forward pass, with conditioning
        
        # Encoder
        encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
                            for mod, d in mod_dict.items()
                            if mod in self.model.encoder_embeddings}
        encoder_tokens, encoder_emb, encoder_mask_cond, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
        x = encoder_tokens + encoder_emb
        x = self.model.forward_encoder(x, encoder_mask_cond) # B, N, D

        # Get batch size
        B = x.shape[0]

        # Decoder
        context_cond = self.model.decoder_proj_context(x) + encoder_emb
        decoder_mod_dict_cond = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
        decoder_ids, decoder_emb, decoder_mask, decoder_mod_mask_cond, mod_pos = self.forward_mask_decoder_autoregressive(decoder_mod_dict_cond, target_mod, seed=seed)
        device = decoder_ids.device
        seq_len = self.model.modality_info[target_mod]['max_tokens']


        ### 2 - Encoder forward pass, without conditioning

        mod_dict_uncond = copy.deepcopy(mod_dict)
        for mod in conditioning:
            if self.model.modality_info[mod]['type'] in ['seq', 'seq_token']:
                mod_dict_uncond = empty_seq_modality(mod_dict_uncond, mod)
            elif self.model.modality_info[mod]['type'] in ['seq_emb']: 
                mod_dict_uncond = empty_seq_emb_modality(mod_dict_uncond, mod)
            else:
                mod_dict_uncond = empty_img_modality(mod_dict_uncond, mod)

        # Encoder
        encoder_mod_dict = {mod: self.model.encoder_embeddings[mod](d)
                            for mod, d in mod_dict_uncond.items()
                            if mod in self.model.encoder_embeddings}
        encoder_tokens, encoder_emb, encoder_mask_uncond, encoder_mod_mask = self.forward_mask_encoder_generation(encoder_mod_dict)
        x = encoder_tokens + encoder_emb
        x = self.model.forward_encoder(x, encoder_mask_uncond) # B, N, D

        # Decoder
        context_uncond = self.model.decoder_proj_context(x) + encoder_emb
        decoder_mod_dict_uncond = {target_mod: self.model.decoder_embeddings[target_mod].forward_embed(mod_dict[target_mod])}
        decoder_ids, decoder_emb, decoder_mask, decoder_mod_mask_uncond, mod_pos = self.forward_mask_decoder_autoregressive(decoder_mod_dict_uncond, target_mod, seed=seed)


        if use_eos and eos_token is None:
            # The eos_token is the final sentinel token provided
            eos_token = decoder_ids[0][decoder_mask[0] == 0][-1] # Assumes the EOS token is the same for all
        if use_eos:
            eos_token = eos_token.to(device)

        # If no start_tokens, just use the beginning of the actual target (i.e., a sentinel token)
        out = decoder_ids[:, :1] if start_tokens is None else start_tokens.to(device)
        # Set decoder_tokens to None, we do not use them for decoding
        decoder_ids = None

        # If all samples of the batch have eos, return early
        if use_eos and (out == eos_token).any(dim=-1).all():
            return out

        y_emb = decoder_emb[:, :seq_len]
        seq_len = y_emb.shape[1]

        ### 3 -  Auto-regressive decoding and sampling
        for i in range(seq_len):
            cur_len = out.shape[1]
            # Convert ids into word embeddings and add corresponding posembs + modemb
            y = self.model.decoder_embeddings[target_mod].token_emb(out) + y_emb[:, :cur_len]
            # Build causal mask
            causal_mask = torch.ones((cur_len, cur_len), dtype=torch.bool, device=y.device).triu(1)
            causal_mask = repeat(causal_mask, "n1 n2 -> b n1 n2", b=B)
            
            ### 3a - Decoder forward pass, with conditioning
            y_cond = self.model.forward_decoder(y, context_cond, encoder_mask_cond, causal_mask)
            logits_cond = self.model.forward_logits(y_cond, decoder_mod_dict_cond, decoder_mod_mask_cond[:, :cur_len])[target_mod]
            logits_cond = rearrange(logits_cond, "(b n) d -> b n d", b=B, n=cur_len)
            last_logits_cond = logits_cond[:, -1]

            ### 3b - Decoder forward pass, without conditioning
            y_uncond = self.model.forward_decoder(y, context_uncond, encoder_mask_uncond, causal_mask)
            logits_uncond = self.model.forward_logits(y_uncond, decoder_mod_dict_uncond, decoder_mod_mask_uncond[:, :cur_len])[target_mod]
            logits_uncond = rearrange(logits_uncond, "(b n) d -> b n d", b=B, n=cur_len)
            last_logits_uncond = logits_uncond[:, -1]

            ### 3c - Classifier-free guidance
            last_logits = last_logits_uncond + (last_logits_cond - last_logits_uncond) * guidance_scale

            # Sample token for the newly generated logit
            if np.isclose(temperature, 0, atol=1e-10):
                sample = torch.argmax(last_logits, dim=-1, keepdim=True)
            else:
                filtered_logits = self.top_k_top_p_filtering(last_logits, top_k, top_p)
                probs = F.softmax(filtered_logits / temperature, dim=-1)
                sample = torch.multinomial(probs, 1)
            out = torch.cat((out, sample), dim=-1)

            if use_eos and (out == eos_token).any(dim=-1).all():
                break

        mod_dict = self.merge_sequences_batched(mod_dict, out, target_mod, text_tokenizer)

        return mod_dict


    @torch.no_grad()
    def generate(self, mod_dict, schedule, top_k=0.0, top_p=0.0, text_tokenizer=None, verbose=False, seed=None):
        """ Generates a sequence of tokens from the input modalities.
        :param mod_dict: Dictionary of modalities.
        :param schedule: Schedule of modalities to use. 
            List of dictionaries containing {target_domain, scheme, num_tokens, temperature, cfg_scale, cfg_cond_domains}.
        :param top_k: top_k > 0: Keep only top k tokens with highest probability (a.k.a. top-k filtering).
        :param top_p: top_p > 0.0: Keep the top tokens with cumulative probability >= top_p (a.k.a. nucleus filtering).
        :param text_tokenizer: Text tokenizer.
        :param verbose: Whether to print progress.
        :param seed: Random seed.
        :return: Generated mod dict.
        """

        # Input embedding -> tokenizes the modalities - Many are placeholder for now
        mod_dict = copy.deepcopy(mod_dict)

        for step, schedule_step_info in tqdm(enumerate(schedule), disable=not verbose):
            target_mod = schedule_step_info['target_domain']
            temp = schedule_step_info['temperature']
            cfg_scale = schedule_step_info.get('cfg_scale', 1.0)
            cfg_conditioning = schedule_step_info.get('cfg_cond_domains', [])
            seed_i = seed + step if seed is not None else None
            
            if self.model.modality_info[target_mod]['type'] == 'img':
                scheme = schedule_step_info['scheme']
                num_select = schedule_step_info['num_tokens']    

                if scheme.lower() == 'maskgit':
                    if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
                        mod_dict = self.maskgit_step_batched(
                            mod_dict, target_mod, num_select, temperature=temp, 
                            top_k=top_k, top_p=top_p, seed=seed_i
                        )
                    else:
                        mod_dict = self.guided_maskgit_step_batched(
                            mod_dict, target_mod, num_select, temperature=temp, top_k=top_k, top_p=top_p,
                            conditioning=cfg_conditioning, guidance_scale=cfg_scale, seed=seed_i
                        )
                elif scheme.lower() == 'roar':
                    if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
                        mod_dict = self.roar_step_batched(
                            mod_dict, target_mod, num_select, temperature=temp, 
                            top_k=top_k, top_p=top_p, seed=seed_i
                        )
                    else:
                        mod_dict = self.guided_roar_step_batched(
                            mod_dict, target_mod, num_select, temperature=temp, top_k=top_k, top_p=top_p, 
                            conditioning=cfg_conditioning, guidance_scale=cfg_scale, seed=seed_i
                        )
                else:
                    raise ValueError("Invalid sampling scheme")
            elif self.model.modality_info[target_mod]['type'] in ['seq', 'seq_token']:
                if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
                    mod_dict = self.autoregressive_step_batched(
                        mod_dict, target_mod, temperature=temp, top_k=top_k, top_p=top_p,
                        text_tokenizer=text_tokenizer, seed=seed_i
                    )
                else:
                    mod_dict = self.guided_autoregressive_step_batched(
                        mod_dict, target_mod, temperature=temp, top_k=top_k, top_p=top_p,
                        text_tokenizer=text_tokenizer, conditioning=cfg_conditioning, 
                        guidance_scale=cfg_scale, seed=seed_i
                    )
            else:
                raise ValueError("Invalid schedule")

        return mod_dict


    @torch.no_grad()
    def generate_iter(self, mod_dict, schedule, top_k=0.0, top_p=0.0, text_tokenizer=None, verbose=False, seed=None):
        """ Iterator that generates a sequence of tokens from the input modalities step by step.
        :param mod_dict: Dictionary of modalities.
        :param schedule: Schedule of modalities to use. 
            List of dictionaries containing {target_domain, scheme, num_tokens, temperature, cfg_scale, cfg_cond_domains}.
        :param top_k: top_k > 0: Keep only top k tokens with highest probability (a.k.a. top-k filtering).
        :param top_p: top_p > 0.0: Keep the top tokens with cumulative probability >= top_p (a.k.a. nucleus filtering).
        :param text_tokenizer: Text tokenizer.
        :param verbose: Whether to print progress.
        :param seed: Random seed.
        :return: Iterator of generated mod dict.
        """

        # Input embedding -> tokenizes the modalities - Many are placeholder for now
        mod_dict = copy.deepcopy(mod_dict)

        for step, schedule_step_info in tqdm(enumerate(schedule), disable=not verbose):
            target_mod = schedule_step_info['target_domain']
            temp = schedule_step_info['temperature']
            cfg_scale = schedule_step_info.get('cfg_scale', 1.0)
            cfg_conditioning = schedule_step_info.get('cfg_cond_domains', [])
            seed_i = seed + step if seed is not None else None
            
            if self.model.modality_info[target_mod]['type'] == 'img':
                scheme = schedule_step_info['scheme']
                num_select = schedule_step_info['num_tokens']    

                if scheme.lower() == 'maskgit':
                    if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
                        mod_dict = self.maskgit_step_batched(
                            mod_dict, target_mod, num_select, temperature=temp, 
                            top_k=top_k, top_p=top_p, seed=seed_i
                        )
                    else:
                        mod_dict = self.guided_maskgit_step_batched(
                            mod_dict, target_mod, num_select, temperature=temp, top_k=top_k, top_p=top_p,
                            conditioning=cfg_conditioning, guidance_scale=cfg_scale, seed=seed_i,
                            write_all_predictions=True
                        )
                elif scheme.lower() == 'roar':
                    if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
                        mod_dict = self.roar_step_batched(
                            mod_dict, target_mod, num_select, temperature=temp, 
                            top_k=top_k, top_p=top_p, seed=seed_i
                        )
                    else:
                        mod_dict = self.guided_roar_step_batched(
                            mod_dict, target_mod, num_select, temperature=temp, top_k=top_k, top_p=top_p, 
                            conditioning=cfg_conditioning, guidance_scale=cfg_scale, seed=seed_i
                        )
                else:
                    raise ValueError("Invalid sampling scheme")
            elif self.model.modality_info[target_mod]['type'] in ['seq', 'seq_token']:
                if cfg_scale == 1.0 or len(cfg_conditioning) == 0:
                    mod_dict = self.autoregressive_step_batched(
                        mod_dict, target_mod, temperature=temp, top_k=top_k, top_p=top_p,
                        text_tokenizer=text_tokenizer, seed=seed_i
                    )
                else:
                    mod_dict = self.guided_autoregressive_step_batched(
                        mod_dict, target_mod, temperature=temp, top_k=top_k, top_p=top_p,
                        text_tokenizer=text_tokenizer, conditioning=cfg_conditioning, 
                        guidance_scale=cfg_scale, seed=seed_i
                    )
            else:
                raise ValueError("Invalid schedule")

            yield mod_dict

    @torch.no_grad()
    def generate_multi_guided(self, uncond_dict, cond_dicts, schedule, top_k=0.0, top_p=0.0, 
                              text_tokenizer=None, verbose=False, seed=None):
        # Generation function for multiple weighted conditions

        # To detect when a modality has finished generating, we keep track of the current target modality
        cur_target_mod = schedule[0]['target_domain']

        uncond_dict = copy.deepcopy(uncond_dict)
        cond_dicts = copy.deepcopy(cond_dicts)

        # Add the to-be-generated modality to the conditional dicts
        for i in range(len(cond_dicts)):
            cond_dicts[i][cur_target_mod] = copy.deepcopy(uncond_dict[cur_target_mod])

        for step, schedule_step_info in tqdm(enumerate(schedule), disable=not verbose):
            target_mod = schedule_step_info['target_domain']
            temp = schedule_step_info['temperature']
            num_select = schedule_step_info['num_tokens']
            cond_weights = schedule_step_info['cfg_scale']

            # Once a modality is fully generated, add it as a new condition
            if cur_target_mod != target_mod:
                for i in range(len(cond_dicts)):
                    # Remove the previously generated modality from the conditionings
                    del cond_dicts[i][cur_target_mod]
                    # Add the next modality to be generated to the conditionings
                    cond_dicts[i][target_mod] = copy.deepcopy(uncond_dict[target_mod])
                
                # Remove the fully generated modality from the unconditional dict inputs
                uncond_dict[cur_target_mod]['input_mask'][:] = True

                # Add the previously generated modality as an additional condition
                new_cond = {}
                new_cond[cur_target_mod] = copy.deepcopy(uncond_dict[cur_target_mod])
                new_cond[cur_target_mod]['input_mask'][:] = False
                new_cond[cur_target_mod]['target_mask'][:] = True
                new_cond[target_mod] = copy.deepcopy(uncond_dict[target_mod])
                cond_dicts.append(new_cond)

                cur_target_mod = target_mod

            if self.model.modality_info[target_mod]['type'] == 'img':
                scheme = schedule_step_info['scheme']

                if scheme.lower() == 'maskgit':
                    uncond_dict, cond_dicts = self.multi_guided_maskgit_step_batched(
                        uncond_dict, cond_dicts, cond_weights, target_mod, num_select, temp, top_k, top_p, seed=seed
                    )
                elif scheme.lower() == 'roar':
                    uncond_dict, cond_dicts = self.multi_guided_roar_step_batched(
                        uncond_dict, cond_dicts, cond_weights, target_mod, num_select, temp, top_k, top_p, seed=seed
                    )
                else:
                    raise ValueError("Invalid sampling scheme")

            else:
                raise NotImplementedError("Only image modalities are supported for now")

        return uncond_dict

    @torch.no_grad()
    def generate_sam_dense(self, mod_dict, schedule, text_tokenizer, batch_size=16,
                            key='sam_instance', top_k=0.0, top_p=0.0, seed=None, verbose=False):
        # Generation function for dense SAM instance prediction
    
        device = mod_dict[list(mod_dict.keys())[0]]['tensor'].device
        mod_dict = copy.deepcopy(mod_dict)
        # Repeat the input batch to match the batch size
        expanded_batch = expand_to_batch(copy.deepcopy(mod_dict), batch_size=batch_size)

        # Filter the schedule to only include the key domain
        schedule = [s for s in schedule if s['target_domain'] == key]
        
        out_dict = self.generate(
            expanded_batch, schedule, text_tokenizer=text_tokenizer, 
            verbose=verbose, seed=seed,
            top_p=top_p, top_k=top_k,
        )

        # Merge the batch generated sequences into one sequence
        sentinel_ids = set(get_sentinel_to_id_mapping(text_tokenizer).values())
        merged_seq = []

        for i in range(batch_size):

            input_seq = out_dict[key]['tensor'][i]
            input_seq = input_seq[out_dict[key]['input_mask'][i] == 0]
            input_seq = input_seq.tolist()
            
            target_seq = out_dict[key]['tensor'][i]
            target_seq = target_seq[out_dict[key]['target_mask'][i] == 0]
            target_seq = target_seq.tolist()

            merged_seq.extend(merge_span_masking(input_seq, target_seq, sentinel_ids=sentinel_ids))
        
        merged_seq = torch.tensor(merged_seq, device=device).unsqueeze(0)
        
        mod_dict[key] = {
            'tensor': merged_seq,
            'input_mask': torch.zeros(merged_seq.shape, dtype=torch.bool, device=device),
            'target_mask': torch.ones(merged_seq.shape, dtype=torch.bool, device=device),
            'decoder_attention_mask': torch.zeros(merged_seq.shape, dtype=torch.bool, device=device),
        }

        return mod_dict