Spaces:
Runtime error
Runtime error
File size: 46,924 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from einops import rearrange, repeat
from diffusers.models.embeddings import (
GaussianFourierProjection,
TimestepEmbedding,
Timesteps,
)
from diffusers.models.unet_2d_blocks import (
DownBlock2D,
UpBlock2D,
)
from diffusers.models.resnet import Downsample2D, Upsample2D
from diffusers.configuration_utils import ConfigMixin
from diffusers.models.modeling_utils import ModelMixin
# xFormers imports
try:
from xformers.ops import memory_efficient_attention, unbind
XFORMERS_AVAILABLE = True
except ImportError:
print("xFormers not available")
XFORMERS_AVAILABLE = False
def modulate(x, shift, scale):
return x * (1.0 + scale.unsqueeze(1)) + shift.unsqueeze(1)
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def build_2d_sincos_posemb(h, w, embed_dim=1024, temperature=10000.):
"""Sine-cosine positional embeddings as used in MoCo-v3
Returns positional embedding of shape [B, H, W, D]
"""
grid_w = torch.arange(w, dtype=torch.float32)
grid_h = torch.arange(h, dtype=torch.float32)
grid_w, grid_h = torch.meshgrid(grid_w, grid_h, indexing='ij')
assert embed_dim % 4 == 0, 'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=torch.float32) / pos_dim
omega = 1. / (temperature ** omega)
out_w = torch.einsum('m,d->md', [grid_w.flatten(), omega])
out_h = torch.einsum('m,d->md', [grid_h.flatten(), omega])
pos_emb = torch.cat([torch.sin(out_w), torch.cos(out_w), torch.sin(out_h), torch.cos(out_h)], dim=1)[None, :, :]
pos_emb = rearrange(pos_emb, 'b (h w) d -> b d h w', h=h, w=w)
return pos_emb
def drop_path(x, drop_prob: float = 0., training: bool = False):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0. or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
random_tensor.floor_() # binarize
output = x.div(keep_prob) * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class Mlp(nn.Module):
def __init__(self, in_features, temb_dim=None, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
self.hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, self.hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(self.hidden_features, out_features)
self.drop = nn.Dropout(drop)
if temb_dim is not None:
self.adaLN_modulation = nn.Linear(temb_dim, 2 * self.hidden_features)
def forward(self, x, temb=None):
x = self.fc1(x)
x = self.act(x)
# Shift and scale using time emb (see https://arxiv.org/abs/2301.11093)
if hasattr(self, 'adaLN_modulation'):
shift, scale = self.adaLN_modulation(F.silu(temb)).chunk(2, dim=-1)
x = modulate(x, shift, scale)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, mask=None):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
if XFORMERS_AVAILABLE:
q, k, v = unbind(qkv, 2)
if mask is not None:
# Wherever mask is True it becomes -infinity, otherwise 0
mask = mask.to(q.dtype) * -torch.finfo(q.dtype).max
x = memory_efficient_attention(q, k, v, attn_bias=mask)
x = x.reshape([B, N, C])
else:
qkv = qkv.permute(2, 0, 3, 1, 4)
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
if mask is not None:
mask = mask.unsqueeze(1)
attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class CrossAttention(nn.Module):
def __init__(self, dim, dim_context=None, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.):
super().__init__()
dim_context = dim_context or dim
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim_context, dim * 2, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, context, mask=None):
B, N, C = x.shape
_, M, _ = context.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads)
kv = self.kv(context).reshape(B, M, 2, self.num_heads, C // self.num_heads)
if XFORMERS_AVAILABLE:
k, v = unbind(kv, 2)
if mask is not None:
# Wherever mask is True it becomes -infinity, otherwise 0
mask = mask.to(q.dtype) * -torch.finfo(q.dtype).max
x = memory_efficient_attention(q, k, v, attn_bias=mask)
x = x.reshape([B, N, C])
else:
q = q.permute(0, 2, 1, 3)
kv = kv.permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
if mask is not None:
mask = rearrange(mask, "b n m -> b 1 n m")
attn = attn.masked_fill(mask, -torch.finfo(attn.dtype).max)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, temb_dim=None, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, temb_in_mlp=False, temb_after_norm=True, temb_gate=True):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, temb_dim=temb_dim if temb_in_mlp else None, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if temb_after_norm and temb_dim is not None:
# adaLN modulation (see https://arxiv.org/abs/2212.09748)
self.adaLN_modulation = nn.Linear(temb_dim, 4 * dim)
if temb_gate and temb_dim is not None:
# adaLN-Zero gate (see https://arxiv.org/abs/2212.09748)
self.adaLN_gate = nn.Linear(temb_dim, 2 * dim)
nn.init.zeros_(self.adaLN_gate.weight)
nn.init.zeros_(self.adaLN_gate.bias)
self.skip_linear = nn.Linear(2*dim, dim) if skip else None
def forward(self, x, temb=None, mask=None, skip_connection=None):
gate_msa, gate_mlp = self.adaLN_gate(F.silu(temb)).unsqueeze(1).chunk(2, dim=-1) if hasattr(self, 'adaLN_gate') else (1.0, 1.0)
shift_msa, scale_msa, shift_mlp, scale_mlp = self.adaLN_modulation(F.silu(temb)).chunk(4, dim=-1) if hasattr(self, 'adaLN_modulation') else 4*[0.0]
if self.skip_linear is not None:
x = self.skip_linear(torch.cat([x, skip_connection], dim=-1))
x = x + gate_msa * self.drop_path(self.attn(modulate(self.norm1(x), shift_msa, scale_msa), mask))
x = x + gate_mlp * self.drop_path(self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp), temb))
return x
class DecoderBlock(nn.Module):
def __init__(self, dim, num_heads, temb_dim=None, dim_context=None, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, temb_in_mlp=False, temb_after_norm=True, temb_gate=True):
super().__init__()
dim_context = dim_context or dim
self.norm1 = norm_layer(dim)
self.self_attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.cross_attn = CrossAttention(dim, dim_context=dim_context, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop)
self.query_norm = norm_layer(dim)
self.context_norm = norm_layer(dim_context)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, temb_dim=temb_dim if temb_in_mlp else None, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if temb_after_norm and temb_dim is not None:
# adaLN modulation (see https://arxiv.org/abs/2212.09748)
self.adaLN_modulation = nn.Linear(temb_dim, 6 * dim)
if temb_gate and temb_dim is not None:
# adaLN-Zero gate (see https://arxiv.org/abs/2212.09748)
self.adaLN_gate = nn.Linear(temb_dim, 3 * dim)
nn.init.zeros_(self.adaLN_gate.weight)
nn.init.zeros_(self.adaLN_gate.bias)
self.skip_linear = nn.Linear(2*dim, dim) if skip else None
def forward(self, x, context, temb=None, sa_mask=None, xa_mask=None, skip_connection=None):
gate_msa, gate_mxa, gate_mlp = self.adaLN_gate(F.silu(temb)).unsqueeze(1).chunk(3, dim=-1) if hasattr(self, 'adaLN_gate') else (1.0, 1.0, 1.0)
shift_msa, scale_msa, shift_mxa, scale_mxa, shift_mlp, scale_mlp = self.adaLN_modulation(F.silu(temb)).chunk(6, dim=-1) if hasattr(self, 'adaLN_modulation') else 6*[0.0]
if self.skip_linear is not None:
x = self.skip_linear(torch.cat([x, skip_connection], dim=-1))
x = x + gate_msa * self.drop_path(self.self_attn(modulate(self.norm1(x), shift_msa, scale_msa), sa_mask))
x = x + gate_mxa * self.drop_path(self.cross_attn(modulate(self.query_norm(x), shift_mxa, scale_mxa), self.context_norm(context), xa_mask))
x = x + gate_mlp * self.drop_path(self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp), temb))
return x
class TransformerConcatCond(nn.Module):
"""UViT Transformer bottleneck that concatenates the condition to the input.
Args:
unet_dim: Number of channels in the last UNet down block.
cond_dim: Number of channels in the condition.
mid_layers: Number of Transformer layers.
mid_num_heads: Number of attention heads.
mid_dim: Transformer dimension.
mid_mlp_ratio: Ratio of MLP hidden dim to Transformer dim.
mid_qkv_bias: Whether to add bias to the query, key, and value projections.
mid_drop_rate: Dropout rate.
mid_attn_drop_rate: Attention dropout rate.
mid_drop_path_rate: Stochastic depth rate.
time_embed_dim: Dimension of the time embedding.
hw_posemb: Size (side) of the 2D positional embedding.
use_long_skip: Whether to use long skip connections.
See https://arxiv.org/abs/2209.12152 for more details.
"""
def __init__(
self,
unet_dim: int = 1024,
cond_dim: int = 32,
mid_layers: int = 12,
mid_num_heads: int = 12,
mid_dim: int = 768,
mid_mlp_ratio: int = 4,
mid_qkv_bias: bool = True,
mid_drop_rate: float = 0.0,
mid_attn_drop_rate: float = 0.0,
mid_drop_path_rate: float = 0.0,
time_embed_dim: int = 512,
hw_posemb: int = 16,
use_long_skip: bool = False,
):
super().__init__()
self.mid_pos_emb = build_2d_sincos_posemb(h=hw_posemb, w=hw_posemb, embed_dim=mid_dim)
self.mid_pos_emb = nn.Parameter(self.mid_pos_emb, requires_grad=False)
self.use_long_skip = use_long_skip
if use_long_skip:
assert mid_layers % 2 == 1, 'mid_layers must be odd when using long skip connection'
dpr = [x.item() for x in torch.linspace(0, mid_drop_path_rate, mid_layers)] # stochastic depth decay rule
self.mid_block = nn.ModuleList([
Block(dim=mid_dim, temb_dim=time_embed_dim, num_heads=mid_num_heads, mlp_ratio=mid_mlp_ratio, qkv_bias=mid_qkv_bias,
drop=mid_drop_rate, attn_drop=mid_attn_drop_rate, drop_path=dpr[i], skip=i > mid_layers//2 and use_long_skip)
for i in range(mid_layers)
])
self.mid_cond_proj = nn.Linear(cond_dim, mid_dim)
self.mid_proj_in = nn.Linear(unet_dim, mid_dim)
self.mid_proj_out = nn.Linear(mid_dim, unet_dim)
self.mask_token = nn.Parameter(torch.zeros(mid_dim), requires_grad=True)
def forward(self,
x: torch.Tensor,
temb: torch.Tensor,
cond: torch.Tensor,
cond_mask: Optional[torch.BoolTensor] = None) -> torch.Tensor:
"""TransformerConcatCond forward pass.
Args:
x: UNet features from the last down block of shape [B, C_mid, H_mid, W_mid].
temb: Time embedding of shape [B, temb_dim].
cond: Condition of shape [B, cond_dim, H_cond, W_cond]. If H_cond and W_cond are
different from H_mid and W_mid, cond is interpolated to match the spatial size
of x.
cond_mask: Condition mask of shape [B, H_mid, W_mid]. If a mask is
defined, replaces masked-out tokens by a learnable mask-token.
Wherever cond_mask is True, the condition gets replaced by the mask token.
Returns:
Features of shape [B, C_mid, H_mid, W_mid] to pass to the UNet up blocks.
"""
B, C_mid, H_mid, W_mid = x.shape
# Rearrange and proj UNet features to sequence of tokens
x = rearrange(x, 'b d h w -> b (h w) d')
x = self.mid_proj_in(x)
# Rearrange and proj conditioning to sequence of tokens
cond = F.interpolate(cond, (H_mid, W_mid)) # Interpolate if necessary
cond = rearrange(cond, 'b d h w -> b (h w) d')
cond = self.mid_cond_proj(cond)
# If a mask is defined, replace masked-out tokens by a learnable mask-token
# Wherever cond_mask is True, the condition gets replaced by the mask token
if cond_mask is not None:
cond_mask = F.interpolate(cond_mask.unsqueeze(1).float(), (H_mid, W_mid), mode='nearest') > 0.5
cond_mask = rearrange(cond_mask, 'b 1 h w -> b (h w)')
cond[cond_mask] = self.mask_token.to(dtype=cond.dtype)
x = x + cond
# Interpolate and rearrange positional embedding to sequence of tokens
mid_pos_emb = F.interpolate(self.mid_pos_emb, (H_mid, W_mid), mode='bicubic', align_corners=False)
mid_pos_emb = rearrange(mid_pos_emb, 'b d h w -> b (h w) d')
x = x + mid_pos_emb
# Transformer forward pass with or without long skip connections
if not self.use_long_skip:
for blk in self.mid_block:
x = blk(x, temb)
else:
skip_connections = []
num_skips = len(self.mid_block) // 2
for blk in self.mid_block[:num_skips]:
x = blk(x, temb)
skip_connections.append(x)
x = self.mid_block[num_skips](x, temb)
for blk in self.mid_block[num_skips+1:]:
x = blk(x, temb, skip_connection=skip_connections.pop())
x = self.mid_proj_out(x) # Project Transformer output back to UNet channels
x = rearrange(x, 'b (h w) d -> b d h w', h=H_mid, w=W_mid) # Rearrange Transformer tokens to a spatial feature map for conv layers
return x
class TransformerXattnCond(nn.Module):
"""UViT Transformer bottleneck that incroporates the condition via cross-attention.
Args:
unet_dim: Number of channels in the last UNet down block.
cond_dim: Number of channels in the condition.
mid_layers: Number of Transformer layers.
mid_num_heads: Number of attention heads.
mid_dim: Transformer dimension.
mid_mlp_ratio: Ratio of MLP hidden dim to Transformer dim.
mid_qkv_bias: Whether to add bias to the query, key, and value projections.
mid_drop_rate: Dropout rate.
mid_attn_drop_rate: Attention dropout rate.
mid_drop_path_rate: Stochastic depth rate.
time_embed_dim: Dimension of the time embedding.
hw_posemb: Size (side) of the 2D positional embedding.
use_long_skip: Whether to use long skip connections.
See https://arxiv.org/abs/2209.12152 for more details.
"""
def __init__(
self,
unet_dim: int = 1024,
cond_dim: int = 32,
mid_layers: int = 12,
mid_num_heads: int = 12,
mid_dim: int = 768,
mid_mlp_ratio: int = 4,
mid_qkv_bias: bool = True,
mid_drop_rate: float = 0.0,
mid_attn_drop_rate: float = 0.0,
mid_drop_path_rate: float = 0.0,
time_embed_dim: int = 512,
hw_posemb: int = 16,
use_long_skip: bool = False,
):
super().__init__()
self.mid_pos_emb = build_2d_sincos_posemb(h=hw_posemb, w=hw_posemb, embed_dim=mid_dim)
self.mid_pos_emb = nn.Parameter(self.mid_pos_emb, requires_grad=False)
self.use_long_skip = use_long_skip
if use_long_skip:
assert mid_layers % 2 == 1, 'mid_layers must be odd when using long skip connection'
dpr = [x.item() for x in torch.linspace(0, mid_drop_path_rate, mid_layers)] # stochastic depth decay rule
self.mid_block = nn.ModuleList([
DecoderBlock(
dim=mid_dim, temb_dim=time_embed_dim, num_heads=mid_num_heads, dim_context=cond_dim,
mlp_ratio=mid_mlp_ratio, qkv_bias=mid_qkv_bias, drop=mid_drop_rate,
attn_drop=mid_attn_drop_rate, drop_path=dpr[i],
skip=i > mid_layers//2 and use_long_skip
)
for i in range(mid_layers)
])
self.mid_proj_in = nn.Linear(unet_dim, mid_dim)
self.mid_proj_out = nn.Linear(mid_dim, unet_dim)
def forward(self,
x: torch.Tensor,
temb: torch.Tensor,
cond: torch.Tensor,
cond_mask: Optional[torch.BoolTensor] = None) -> torch.Tensor:
"""TransformerXattnCond forward pass.
Args:
x: UNet features from the last down block of shape [B, C_mid, H_mid, W_mid].
temb: Time embedding of shape [B, temb_dim].
cond: Condition of shape [B, cond_dim, H_cond, W_cond].
cond_mask: Condition cross-attention mask of shape [B, H_cond, W_cond].
If a mask is defined, wherever cond_mask is True, the condition at that
spatial location is not cross-attended to.
Returns:
Features of shape [B, C_mid, H_mid, W_mid] to pass to the UNet up blocks.
"""
B, C_mid, H_mid, W_mid = x.shape
# Rearrange and proj UNet features to sequence of tokens
x = rearrange(x, 'b d h w -> b (h w) d')
x = self.mid_proj_in(x)
# Rearrange conditioning to sequence of tokens
cond = rearrange(cond, 'b d h w -> b (h w) d')
# Interpolate and rearrange positional embedding to sequence of tokens
mid_pos_emb = F.interpolate(self.mid_pos_emb, (H_mid, W_mid), mode='nearest')
mid_pos_emb = rearrange(mid_pos_emb, 'b d h w -> b (h w) d')
# Add UNet mid-block features and positional embedding
x = x + mid_pos_emb
# Prepare the conditioning cross-attention mask
xa_mask = repeat(cond_mask, 'b h w -> b n (h w)', n=x.shape[1]) if cond_mask is not None else None
# Transformer forward pass with or without long skip connections.
# In each layer, cross-attend to the conditioning.
if not self.use_long_skip:
for blk in self.mid_block:
x = blk(x, cond, temb, xa_mask=xa_mask)
else:
skip_connections = []
num_skips = len(self.mid_block) // 2
for blk in self.mid_block[:num_skips]:
x = blk(x, cond, temb, xa_mask=xa_mask)
skip_connections.append(x)
x = self.mid_block[num_skips](x, cond, temb, xa_mask=xa_mask)
for blk in self.mid_block[num_skips+1:]:
x = blk(x, cond, temb, xa_mask=xa_mask, skip_connection=skip_connections.pop())
x = self.mid_proj_out(x) # Project Transformer output back to UNet channels
x = rearrange(x, 'b (h w) d -> b d h w', h=H_mid, w=W_mid) # Rearrange Transformer tokens to a spatial feature map for conv layers
return x
class UViT(ModelMixin, ConfigMixin):
"""UViT model = Conditional UNet with Transformer bottleneck
blocks and optionalpatching.
See https://arxiv.org/abs/2301.11093 for more details.
Args:
sample_size: Size of the input images.
in_channels: Number of input channels.
out_channels: Number of output channels.
patch_size: Size of the input patching operation.
See https://arxiv.org/abs/2207.04316 for more details.
block_out_channels: Number of output channels of each UNet ResNet-block.
layers_per_block: Number of ResNet blocks per UNet block.
downsample_before_mid: Whether to downsample before the Transformer bottleneck.
mid_layers: Number of Transformer blocks.
mid_num_heads: Number of attention heads.
mid_dim: Transformer dimension.
mid_mlp_ratio: Transformer MLP ratio.
mid_qkv_bias: Whether to use bias in the Transformer QKV projection.
mid_drop_rate: Dropout rate of the Transformer MLP and attention output projection.
mid_attn_drop_rate: Dropout rate of the Transformer attention.
mid_drop_path_rate: Stochastic depth rate of the Transformer blocks.
mid_hw_posemb: Size (side) of the Transformer positional embedding.
mid_use_long_skip: Whether to use long skip connections in the Transformer blocks.
See https://arxiv.org/abs/2209.12152 for more details.
cond_dim: Dimension of the conditioning vector.
cond_type: Type of conditioning.
'concat' for concatenation, 'xattn' for cross-attention.
downsample_padding: Padding of the UNet downsampling convolutions.
act_fn: Activation function.
norm_num_groups: Number of groups in the UNet ResNet-block normalization.
norm_eps: Epsilon of the UNet ResNet-block normalization.
resnet_time_scale_shift: Time scale shift of the UNet ResNet-blocks.
resnet_out_scale_factor: Output scale factor of the UNet ResNet-blocks.
time_embedding_type: Type of the time embedding.
'positional' for positional, 'fourier' for Fourier.
time_embedding_dim: Dimension of the time embedding.
time_embedding_act_fn: Activation function of the time embedding.
timestep_post_act: Activation function after the time embedding.
time_cond_proj_dim: Dimension of the optional conditioning projection.
flip_sin_to_cos: Whether to flip the sine to cosine in the time embedding.
freq_shift: Frequency shift of the time embedding.
res_embedding: Whether to perform original resolution conditioning.
See SDXL https://arxiv.org/abs/2307.01952 for more details.
"""
def __init__(self,
# UNet settings
sample_size: Optional[int] = None,
in_channels: int = 3,
out_channels: int = 3,
patch_size: int = 4,
block_out_channels: Tuple[int] = (128, 256, 512),
layers_per_block: Union[int, Tuple[int]] = 2,
downsample_before_mid: bool = False,
# Mid-block Transformer settings
mid_layers: int = 12,
mid_num_heads: int = 12,
mid_dim: int = 768,
mid_mlp_ratio: int = 4,
mid_qkv_bias: bool = True,
mid_drop_rate: float = 0.0,
mid_attn_drop_rate: float = 0.0,
mid_drop_path_rate: float = 0.0,
mid_hw_posemb: int = 32,
mid_use_long_skip: bool = False,
# Conditioning settings
cond_dim: int = 32,
cond_type: str = 'concat',
# ResNet blocks settings
downsample_padding: int = 1,
act_fn: str = "silu",
norm_num_groups: Optional[int] = 32,
norm_eps: float = 1e-5,
resnet_time_scale_shift: str = "default",
resnet_out_scale_factor: int = 1.0,
# Time embedding settings
time_embedding_type: str = "positional",
time_embedding_dim: Optional[int] = None,
time_embedding_act_fn: Optional[str] = None,
timestep_post_act: Optional[str] = None,
time_cond_proj_dim: Optional[int] = None,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
# Original resolution embedding settings
res_embedding: bool = False):
super().__init__()
self.sample_size = sample_size
self.in_channels = in_channels
self.out_channels = out_channels
self.mid_dim = block_out_channels[-1]
self.res_embedding = res_embedding
# input patching
self.conv_in = nn.Conv2d(
in_channels, block_out_channels[0], kernel_size=patch_size, padding=0, stride=patch_size
)
# time
if time_embedding_type == "fourier":
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
if time_embed_dim % 2 != 0:
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
self.time_proj = GaussianFourierProjection(
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
)
timestep_input_dim = time_embed_dim
elif time_embedding_type == "positional":
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
else:
raise ValueError(
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
)
self.time_embedding = TimestepEmbedding(
timestep_input_dim,
time_embed_dim,
act_fn=act_fn,
post_act_fn=timestep_post_act,
cond_proj_dim=time_cond_proj_dim,
)
if time_embedding_act_fn is None:
self.time_embed_act = None
elif time_embedding_act_fn == "swish":
self.time_embed_act = lambda x: F.silu(x)
elif time_embedding_act_fn == "mish":
self.time_embed_act = nn.Mish()
elif time_embedding_act_fn == "silu":
self.time_embed_act = nn.SiLU()
elif time_embedding_act_fn == "gelu":
self.time_embed_act = nn.GELU()
else:
raise ValueError(f"Unsupported activation function: {time_embedding_act_fn}")
# original resolution embedding
if res_embedding:
if time_embedding_type == "fourier":
self.h_proj = GaussianFourierProjection(
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
)
self.w_proj = GaussianFourierProjection(
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
)
elif time_embedding_type == "positional":
self.height_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
self.width_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
self.height_embedding = TimestepEmbedding(
timestep_input_dim, time_embed_dim, act_fn=act_fn,
post_act_fn=timestep_post_act, cond_proj_dim=time_cond_proj_dim,
)
self.width_embedding = TimestepEmbedding(
timestep_input_dim, time_embed_dim, act_fn=act_fn,
post_act_fn=timestep_post_act, cond_proj_dim=time_cond_proj_dim,
)
self.down_blocks = nn.ModuleList([])
self.up_blocks = nn.ModuleList([])
if isinstance(layers_per_block, int):
layers_per_block = [layers_per_block] * len(block_out_channels)
# down
output_channel = block_out_channels[0]
for i in range(len(block_out_channels)):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = DownBlock2D(
num_layers=layers_per_block[i],
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
downsample_padding=downsample_padding,
resnet_time_scale_shift=resnet_time_scale_shift,
output_scale_factor=resnet_out_scale_factor,
)
self.down_blocks.append(down_block)
if downsample_before_mid:
self.downsample_mid = Downsample2D(self.mid_dim, use_conv=True, out_channels=self.mid_dim)
# mid
if cond_type == 'concat':
self.mid_block = TransformerConcatCond(
unet_dim=self.mid_dim, cond_dim=cond_dim, mid_layers=mid_layers, mid_num_heads=mid_num_heads,
mid_dim=mid_dim, mid_mlp_ratio=mid_mlp_ratio, mid_qkv_bias=mid_qkv_bias,
mid_drop_rate=mid_drop_rate, mid_attn_drop_rate=mid_attn_drop_rate, mid_drop_path_rate=mid_drop_path_rate,
time_embed_dim=time_embed_dim, hw_posemb=mid_hw_posemb, use_long_skip=mid_use_long_skip,
)
elif cond_type == 'xattn':
self.mid_block = TransformerXattnCond(
unet_dim=self.mid_dim, cond_dim=cond_dim, mid_layers=mid_layers, mid_num_heads=mid_num_heads,
mid_dim=mid_dim, mid_mlp_ratio=mid_mlp_ratio, mid_qkv_bias=mid_qkv_bias,
mid_drop_rate=mid_drop_rate, mid_attn_drop_rate=mid_attn_drop_rate, mid_drop_path_rate=mid_drop_path_rate,
time_embed_dim=time_embed_dim, hw_posemb=mid_hw_posemb, use_long_skip=mid_use_long_skip,
)
else:
raise ValueError(f"Unsupported cond_type: {cond_type}")
# count how many layers upsample the images
self.num_upsamplers = 0
# up
if downsample_before_mid:
self.upsample_mid = Upsample2D(self.mid_dim, use_conv=True, out_channels=self.mid_dim)
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_layers_per_block = list(reversed(layers_per_block))
output_channel = reversed_block_out_channels[0]
for i in range(len(reversed_block_out_channels)):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = UpBlock2D(
num_layers=reversed_layers_per_block[i] + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
resnet_time_scale_shift=resnet_time_scale_shift,
output_scale_factor=resnet_out_scale_factor,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_num_groups is not None:
self.conv_norm_out = nn.GroupNorm(
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
)
if act_fn == "swish":
self.conv_act = lambda x: F.silu(x)
elif act_fn == "mish":
self.conv_act = nn.Mish()
elif act_fn == "silu":
self.conv_act = nn.SiLU()
elif act_fn == "gelu":
self.conv_act = nn.GELU()
else:
raise ValueError(f"Unsupported activation function: {act_fn}")
else:
self.conv_norm_out = None
self.conv_act = None
self.conv_out = nn.ConvTranspose2d(
block_out_channels[0], out_channels, kernel_size=patch_size, stride=patch_size
)
self.init_weights()
def init_weights(self) -> None:
"""Weight initialization following MAE's initialization scheme"""
for name, m in self.named_modules():
# Handle already zero-init gates
if "adaLN_gate" in name:
continue
# Handle ResNet gates that were not initialized by diffusers
if "conv2" in name:
nn.init.zeros_(m.weight)
nn.init.zeros_(m.bias)
# Linear
elif isinstance(m, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
elif 'kv' in name:
# treat the weights of K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
else:
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
# LayerNorm
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
# Embedding
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, std=self.init_std)
# Conv2d
elif isinstance(m, nn.Conv2d):
if '.conv_in' in name or '.conv_out' in name:
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
w = m.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
condition: torch.Tensor,
cond_mask: Optional[torch.Tensor] = None,
timestep_cond: Optional[torch.Tensor] = None,
orig_res: Optional[Union[torch.LongTensor, Tuple[int, int]]] = None,
**kwargs,
) -> torch.Tensor:
"""UViT forward pass.
Args:
sample: Noisy image of shape (B, C, H, W).
timestep: Timestep(s) of the current batch.
condition: Conditioning tensor of shape (B, C_cond, H_cond, W_cond). When concatenating
the condition, it is interpolated to the resolution of the transformer (H_mid, W_mid).
cond_mask: Mask tensor of shape (B, H_mid, W_mid) when concatenating the condition
to the transformer, and (B, H_cond, W_cond) when using cross-attention. True for
masked out / ignored regions.
timestep_cond: Optional conditioning to add to the timestep embedding.
orig_res: The original resolution of the image to condition the diffusion on. Ignored if None.
See SDXL https://arxiv.org/abs/2307.01952 for more details.
Returns:
Diffusion objective target image of shape (B, C, H, W).
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
forward_upsample_size = True
# 1. time
timesteps = timestep
is_mps = sample.device.type == "mps"
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# `Timesteps` does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=sample.dtype)
emb = self.time_embedding(t_emb, timestep_cond)
# 1.5 original resolution conditioning (see SDXL paper)
if orig_res is not None and self.res_embedding:
if not torch.is_tensor(orig_res):
h_orig, w_orig = orig_res
dtype = torch.int32 if is_mps else torch.int64
h_orig = torch.tensor([h_orig], dtype=dtype, device=sample.device).expand(sample.shape[0])
w_orig = torch.tensor([w_orig], dtype=dtype, device=sample.device).expand(sample.shape[0])
else:
h_orig, w_orig = orig_res[:,0], orig_res[:,1]
h_emb = self.height_proj(h_orig).to(dtype=sample.dtype)
w_emb = self.width_proj(w_orig).to(dtype=sample.dtype)
emb = emb + self.height_embedding(h_emb)
emb = emb + self.width_embedding(w_emb)
if self.time_embed_act is not None:
emb = self.time_embed_act(emb)
# 2. pre-process
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
if hasattr(self, 'downsample_mid'):
sample = self.downsample_mid(sample)
# 4. mid
sample = self.mid_block(sample, emb, condition, cond_mask)
# 5. up
if hasattr(self, 'upsample_mid'):
sample = self.upsample_mid(sample)
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
if self.conv_norm_out:
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
def uvit_b_p4_f16(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256),
layers_per_block=2,
downsample_before_mid=True,
mid_layers=12,
mid_num_heads=12,
mid_dim=768,
mid_mlp_ratio=4,
mid_qkv_bias=True,
**kwargs
)
def uvit_l_p4_f16(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256),
layers_per_block=2,
downsample_before_mid=True,
mid_layers=24,
mid_num_heads=16,
mid_dim=1024,
mid_mlp_ratio=4,
mid_qkv_bias=True,
**kwargs
)
def uvit_h_p4_f16(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256),
layers_per_block=2,
downsample_before_mid=True,
mid_layers=32,
mid_num_heads=16,
mid_dim=1280,
mid_mlp_ratio=4,
mid_qkv_bias=True,
**kwargs
)
def uvit_b_p4_f16_longskip(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256),
layers_per_block=2,
downsample_before_mid=True,
mid_layers=13,
mid_num_heads=12,
mid_dim=768,
mid_mlp_ratio=4,
mid_qkv_bias=True,
mid_use_long_skip=True,
**kwargs
)
def uvit_l_p4_f16_longskip(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256),
layers_per_block=2,
downsample_before_mid=True,
mid_layers=25,
mid_num_heads=16,
mid_dim=1024,
mid_mlp_ratio=4,
mid_qkv_bias=True,
mid_use_long_skip=True,
**kwargs
)
def uvit_b_p4_f8(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256),
layers_per_block=2,
downsample_before_mid=False,
mid_layers=12,
mid_num_heads=12,
mid_dim=768,
mid_mlp_ratio=4,
mid_qkv_bias=True,
**kwargs
)
def uvit_l_p4_f8(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256),
layers_per_block=2,
downsample_before_mid=False,
mid_layers=24,
mid_num_heads=16,
mid_dim=1024,
mid_mlp_ratio=4,
mid_qkv_bias=True,
**kwargs
)
def uvit_b_p4_f16_extraconv(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256, 512),
layers_per_block=2,
downsample_before_mid=False,
mid_layers=12,
mid_num_heads=12,
mid_dim=768,
mid_mlp_ratio=4,
mid_qkv_bias=True,
**kwargs
)
def uvit_l_p4_f16_extraconv(**kwargs):
return UViT(
patch_size=4,
block_out_channels=(128, 256, 512),
layers_per_block=2,
downsample_before_mid=False,
mid_layers=24,
mid_num_heads=16,
mid_dim=1024,
mid_mlp_ratio=4,
mid_qkv_bias=True,
**kwargs
)
|