File size: 48,534 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Tuple, Dict, Optional, Union, Any
from contextlib import nullcontext
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers import StableDiffusionPipeline
from huggingface_hub import PyTorchModelHubMixin

from fourm.vq.quantizers import VectorQuantizerLucid, Memcodes
import fourm.vq.models.vit_models as vit_models 
import fourm.vq.models.unet.unet as unet
import fourm.vq.models.uvit as uvit
import fourm.vq.models.controlnet as controlnet
from fourm.vq.models.mlp_models import build_mlp
from fourm.vq.scheduling import DDPMScheduler, DDIMScheduler, PNDMScheduler, PipelineCond

from fourm.utils import denormalize


# If freeze_enc is True, the following modules will be frozen
FREEZE_MODULES = ['encoder', 'quant_proj', 'quantize', 'cls_emb']

class VQ(nn.Module, PyTorchModelHubMixin):
    """Base class for VQVAE and DiVAE models. Implements the encoder and quantizer, and can be used as such without a decoder
    after training.

    Args:
        image_size: Input and target image size.
        image_size_enc: Input image size for the encoder. Defaults to image_size. Change this when loading weights 
          from a tokenizer trained on a different image size.
        n_channels: Number of input channels.
        n_labels: Number of classes for semantic segmentation.
        enc_type: String identifier specifying the encoder architecture. See vq/vit_models.py and vq/mlp_models.py 
            for available architectures.
        patch_proj: Whether or not to use a ViT-style patch-wise linear projection in the encoder.
        post_mlp: Whether or not to add a small point-wise MLP before the quantizer.
        patch_size: Patch size for the encoder.
        quant_type: String identifier specifying the quantizer implementation. Can be 'lucid', or 'memcodes'.
        codebook_size: Number of codebook entries.
        num_codebooks: Number of "parallel" codebooks to use. Only relevant for 'lucid' and 'memcodes' quantizers.
          When using this, the tokens will be of shape B N_C H_Q W_Q, where N_C is the number of codebooks.
        latent_dim: Dimensionality of the latent code. Can be small when using norm_codes=True, 
          see ViT-VQGAN (https://arxiv.org/abs/2110.04627) paper for details.
        norm_codes: Whether or not to normalize the codebook entries to the unit sphere.
          See ViT-VQGAN (https://arxiv.org/abs/2110.04627) paper for details.
        norm_latents: Whether or not to normalize the latent codes to the unit sphere for computing commitment loss.
        sync_codebook: Enable this when training on multiple GPUs, and disable for single GPUs, e.g. at inference.
        ema_decay: Decay rate for the exponential moving average of the codebook entries.
        threshold_ema_dead_code: Threshold for replacing stale codes that are used less than the 
          indicated exponential moving average of the codebook entries.
        code_replacement_policy: Policy for replacing stale codes. Can be 'batch_random' or 'linde_buzo_gray'.
        commitment_weight: Weight for the quantizer commitment loss.
        kmeans_init: Whether or not to initialize the codebook entries with k-means clustering.
        ckpt_path: Path to a checkpoint to load the model weights from.
        ignore_keys: List of keys to ignore when loading the state_dict from the above checkpoint.
        freeze_enc: Whether or not to freeze the encoder weights. See FREEZE_MODULES for the list of modules.
        undo_std: Whether or not to undo any ImageNet standardization and transform the images to [-1,1] 
          before feeding the input to the encoder.
        config: Dictionary containing the model configuration. Only used when loading
            from Huggingface Hub. Ignore otherwise.
    """
    def __init__(self,
                 image_size: int = 224,
                 image_size_enc: Optional[int] = None,
                 n_channels: str = 3,
                 n_labels: Optional[int] = None,
                 enc_type: str = 'vit_b_enc',
                 patch_proj: bool = True,
                 post_mlp: bool = False,
                 patch_size: int = 16,
                 quant_type: str = 'lucid',
                 codebook_size: Union[int, str] = 16384,
                 num_codebooks: int = 1,
                 latent_dim: int = 32,
                 norm_codes: bool = True,
                 norm_latents: bool = False,
                 sync_codebook: bool = True,
                 ema_decay: float = 0.99,
                 threshold_ema_dead_code: float = 0.25,
                 code_replacement_policy: str = 'batch_random',
                 commitment_weight: float = 1.0,
                 kmeans_init: bool = False,
                 ckpt_path: Optional[str] = None,
                 ignore_keys: List[str] = [
                    'decoder', 'loss', 
                    'post_quant_conv', 'post_quant_proj', 
                    'encoder.pos_emb',
                 ],
                 freeze_enc: bool = False,
                 undo_std: bool = False,
                 config: Optional[Dict[str, Any]] = None,
                 **kwargs):
        if config is not None:
            config = copy.deepcopy(config)
            self.__init__(**config)
            return
        
        super().__init__()

        self.image_size = image_size
        self.n_channels = n_channels
        self.n_labels = n_labels
        self.enc_type = enc_type
        self.patch_proj = patch_proj
        self.post_mlp = post_mlp
        self.patch_size = patch_size
        self.quant_type = quant_type
        self.codebook_size = codebook_size
        self.num_codebooks = num_codebooks
        self.latent_dim = latent_dim
        self.norm_codes = norm_codes
        self.norm_latents = norm_latents
        self.sync_codebook = sync_codebook
        self.ema_decay = ema_decay
        self.threshold_ema_dead_code = threshold_ema_dead_code
        self.code_replacement_policy = code_replacement_policy
        self.commitment_weight = commitment_weight
        self.kmeans_init = kmeans_init
        self.ckpt_path = ckpt_path
        self.ignore_keys = ignore_keys
        self.freeze_enc = freeze_enc
        self.undo_std = undo_std

        # For semantic segmentation
        if n_labels is not None:
            self.cls_emb = nn.Embedding(num_embeddings=n_labels, embedding_dim=n_channels)
            self.colorize = torch.randn(3, n_labels, 1, 1)
        else:
            self.cls_emb = None

        # Init encoder
        image_size_enc = image_size_enc or image_size
        if 'vit' in enc_type:
            self.encoder = getattr(vit_models, enc_type)(
                in_channels=n_channels, patch_size=patch_size, 
                resolution=image_size_enc, patch_proj=patch_proj, post_mlp=post_mlp
            )
            self.enc_dim = self.encoder.dim_tokens
        elif 'MLP' in enc_type:
            self.encoder = build_mlp(model_id=enc_type, dim_in=n_channels, dim_out=None)
            self.enc_dim = self.encoder.dim_out
        else:
            raise NotImplementedError(f'{enc_type} not implemented.')
        
        # Encoder -> quantizer projection
        self.quant_proj = torch.nn.Conv2d(self.enc_dim, self.latent_dim, 1)

        # Init quantizer
        if quant_type == 'lucid':
            self.quantize = VectorQuantizerLucid(
                dim=latent_dim,
                codebook_size=codebook_size,
                codebook_dim=latent_dim,
                heads=num_codebooks,
                use_cosine_sim = norm_codes,
                threshold_ema_dead_code = threshold_ema_dead_code,
                code_replacement_policy=code_replacement_policy,
                sync_codebook = sync_codebook,
                decay = ema_decay,
                commitment_weight=self.commitment_weight,
                norm_latents = norm_latents,
                kmeans_init=kmeans_init,
            )
        elif quant_type == 'memcodes':
            self.quantize = Memcodes(
                dim=latent_dim, codebook_size=codebook_size,
                heads=num_codebooks, temperature=1.,
            )
        else:
            raise ValueError(f'{quant_type} not a valid quant_type.')

        # Load checkpoint
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
        
        # Freeze encoder
        if freeze_enc:
            for module_name, module in self.named_children():
                if module_name not in FREEZE_MODULES:
                    continue
                for param in module.parameters():
                    param.requires_grad = False
                module.eval()

    def train(self, mode: bool = True) -> 'VQ':
        """Override the default train() to set the training mode to all modules 
        except the encoder if freeze_enc is True.

        Args:
            mode: Whether to set the model to training mode (True) or evaluation mode (False).
        """
        if not isinstance(mode, bool):
            raise ValueError("training mode is expected to be boolean")
        self.training = mode
        for module_name, module in self.named_children():
            if self.freeze_enc and module_name in FREEZE_MODULES:
                continue
            module.train(mode)
        return self

    def init_from_ckpt(self, path: str, ignore_keys: List[str] = list()) -> 'VQ':
        """Loads the state_dict from a checkpoint file and initializes the model with it.
        Renames the keys in the state_dict if necessary (e.g. when loading VQ-GAN weights).

        Args:
            path: Path to the checkpoint file.
            ignore_keys: List of keys to ignore when loading the state_dict.

        Returns:
            self
        """
        ckpt = torch.load(path, map_location="cpu")
        sd = ckpt['model'] if 'model' in ckpt else ckpt['state_dict']

        # Compatibility with ViT-VQGAN weights
        if 'quant_conv.0.weight' in sd and 'quant_conv.0.bias' in sd:
            print("Renaming quant_conv.0 to quant_proj")
            sd['quant_proj.weight'] = sd['quant_conv.0.weight']
            sd['quant_proj.bias'] = sd['quant_conv.0.bias']
            del sd['quant_conv.0.weight']
            del sd['quant_conv.0.bias']
        elif 'quant_conv.weight' in sd and 'quant_conv.bias' in sd:
            print("Renaming quant_conv to quant_proj")
            sd['quant_proj.weight'] = sd['quant_conv.weight']
            sd['quant_proj.bias'] = sd['quant_conv.bias']
            del sd['quant_conv.weight']
            del sd['quant_conv.bias']
        if 'post_quant_conv.0.weight' in sd and 'post_quant_conv.0.bias' in sd:
            print("Renaming post_quant_conv.0 to post_quant_proj")
            sd['post_quant_proj.weight'] = sd['post_quant_conv.0.weight']
            sd['post_quant_proj.bias'] = sd['post_quant_conv.0.bias']
            del sd['post_quant_conv.0.weight']
            del sd['post_quant_conv.0.bias']
        elif 'post_quant_conv.weight' in sd and 'post_quant_conv.bias' in sd:
            print("Renaming post_quant_conv to post_quant_proj")
            sd['post_quant_proj.weight'] = sd['post_quant_conv.weight']
            sd['post_quant_proj.bias'] = sd['post_quant_conv.bias']
            del sd['post_quant_conv.weight']
            del sd['post_quant_conv.bias']

        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        msg = self.load_state_dict(sd, strict=False)
        print(msg)
        print(f"Restored from {path}")

        return self

    def prepare_input(self, x: torch.Tensor) -> torch.Tensor:
        """Preprocesses the input image tensor before feeding it to the encoder.
        If self.undo_std, the input is first denormalized from the ImageNet 
        standardization to [-1, 1]. If semantic segmentation is performed, the 
        class indices are embedded.

        Args:
            x: Input image tensor of shape B C H W 
              or B H W in case of semantic segmentation

        Returns:
            Preprocessed input tensor of shape B C H W
        """
        if self.undo_std:
            x = 2.0 * denormalize(x) - 1.0
        if self.cls_emb is not None:
            x = rearrange(self.cls_emb(x), 'b h w c -> b c h w')
        return x

    def to_rgb(self, x: torch.Tensor) -> torch.Tensor:
        """When semantic segmentation is performed, this function converts the 
        class embeddings to RGB.

        Args:
            x: Input tensor of shape B C H W

        Returns:
            RGB tensor of shape B C H W
        """
        x = F.conv2d(x, weight=self.colorize)
        x = (x-x.min())/(x.max()-x.min())
        return x

    def encode(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
        """Encodes an input image tensor and quantizes the latent code.

        Args:
            x: Input image tensor of shape B C H W
              or B H W in case of semantic segmentation
        
        Returns:
            quant: Quantized latent code of shape B D_Q H_Q W_Q
            code_loss: Codebook loss
            tokens: Quantized indices of shape B H_Q W_Q
        """
        x = self.prepare_input(x)
        h = self.encoder(x)
        h = self.quant_proj(h)
        quant, code_loss, tokens = self.quantize(h)
        return quant, code_loss, tokens

    def tokenize(self, x: torch.Tensor) -> torch.LongTensor:
        """Tokenizes an input image tensor.

        Args:
            x: Input image tensor of shape B C H W
              or B H W in case of semantic segmentation

        Returns:
            Quantized indices of shape B H_Q W_Q
        """
        _, _, tokens = self.encode(x)
        return tokens
    
    def autoencode(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        """Autoencodes an input image tensor by encoding it, quantizing the latent code, 
        and decoding it back to an image.

        Args:
            x: Input image tensor of shape B C H W
              or B H W in case of semantic segmentation
        
        Returns:
            Reconstructed image tensor of shape B C H W
        """
        pass

    def decode_quant(self, quant: torch.Tensor, **kwargs) -> torch.Tensor:
        """Decodes quantized latent codes back to an image.

        Args:
            quant: Quantized latent code of shape B D_Q H_Q W_Q

        Returns:
            Decoded image tensor of shape B C H W
        """
        pass

    def tokens_to_embedding(self, tokens: torch.LongTensor) -> torch.Tensor:
        """Look up the codebook entries corresponding the discrete tokens.

        Args:
            tokens: Quantized indices of shape B H_Q W_Q

        Returns:
            Quantized latent code of shape B D_Q H_Q W_Q
        """
        return self.quantize.indices_to_embedding(tokens)

    def decode_tokens(self, tokens: torch.LongTensor, **kwargs) -> torch.Tensor:
        """Decodes discrete tokens back to an image.

        Args:
            tokens: Quantized indices of shape B H_Q W_Q

        Returns:
            Decoded image tensor of shape B C H W
        """
        quant = self.tokens_to_embedding(tokens)
        dec = self.decode_quant(quant, **kwargs)
        return dec
    
    def forward(self, x: torch.Tensor, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward pass of the encoder and quantizer.

        Args:
            x: Input image tensor of shape B C H W
              or B H W in case of semantic segmentation
        
        Returns:
            quant: Quantized latent code of shape B D_Q H_Q W_Q
            code_loss: Codebook loss
        """
        quant, code_loss, _ = self.encode(x)
        return quant, code_loss


class VQVAE(VQ):
    """VQ-VAE model = simple encoder + decoder with a discrete bottleneck and 
    basic reconstruction loss (optionall with perceptual loss), i.e. no diffusion, 
    nor GAN discriminator.

    Args:
        dec_type: String identifier specifying the decoder architecture. 
          See vq/vit_models.py and vq/mlp_models.py for available architectures.
        out_conv: Whether or not to add final conv layers to the ViT decoder.
        image_size_dec: Image size for the decoder. Defaults to self.image_size. 
          Change this when loading weights from a tokenizer decoder trained on a 
          different image size.
        patch_size_dec: Patch size for the decoder. Defaults to self.patch_size.
        config: Dictionary containing the model configuration. Only used when loading
            from Huggingface Hub. Ignore otherwise.
    """
    def __init__(self, 
                 dec_type: str = 'vit_b_dec', 
                 out_conv: bool = False,
                 image_size_dec: int = None, 
                 patch_size_dec: int = None,
                 config: Optional[Dict[str, Any]] = None,
                 *args, 
                 **kwargs):
        if config is not None:
            config = copy.deepcopy(config)
            self.__init__(**config)
            return
        # Don't want to load the weights just yet
        self.original_ckpt_path = kwargs.get('ckpt_path', None)
        kwargs['ckpt_path'] = None
        super().__init__(*args, **kwargs)
        self.ckpt_path = self.original_ckpt_path

        # Init decoder
        out_channels = self.n_channels if self.n_labels is None else self.n_labels
        image_size_dec = image_size_dec or self.image_size
        patch_size = patch_size_dec or self.patch_size
        if 'vit' in dec_type:
            self.decoder = getattr(vit_models, dec_type)(
                out_channels=out_channels, patch_size=patch_size, 
                resolution=image_size_dec, out_conv=out_conv, post_mlp=self.post_mlp,
                patch_proj=self.patch_proj
            )
            self.dec_dim = self.decoder.dim_tokens
        elif 'MLP' in dec_type:
            self.decoder = build_mlp(model_id=dec_type, dim_in=None, dim_out=out_channels)
            self.dec_dim = self.decoder.dim_in
        else:
            raise NotImplementedError(f'{dec_type} not implemented.')

        # Quantizer -> decoder projection
        self.post_quant_proj = torch.nn.Conv2d(self.latent_dim, self.dec_dim, 1)

        # Load checkpoint
        if self.ckpt_path is not None:
            self.init_from_ckpt(self.ckpt_path, ignore_keys=self.ignore_keys)

    def decode_quant(self, quant: torch.Tensor, **kwargs) -> torch.Tensor:
        """Decodes quantized latent codes back to an image.

        Args:
            quant: Quantized latent code of shape B D_Q H_Q W_Q

        Returns:
            Decoded image tensor of shape B C H W
        """
        quant = self.post_quant_proj(quant)
        dec = self.decoder(quant)
        return dec

    def forward(self, x: torch.Tensor, **kwargs) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward pass of the encoder, quantizer, and decoder.

        Args:
            x: Input image tensor of shape B C H W
              or B H W in case of semantic segmentation
        
        Returns:
            dec: Decoded image tensor of shape B C H W
            code_loss: Codebook loss
        """
        with torch.no_grad() if self.freeze_enc else nullcontext():
            quant, code_loss, _ = self.encode(x)
        dec = self.decode_quant(quant)
        return dec, code_loss

    def autoencode(self, x: torch.Tensor, **kwargs) -> torch.Tensor:
        """Autoencodes an input image tensor by encoding it, quantizing the 
        latent code, and decoding it back to an image.

        Args:
            x: Input image tensor of shape B C H W
              or B H W in case of semantic segmentation
        
        Returns:
            Reconstructed image tensor of shape B C H W
        """
        dec, _ = self.forward(x)
        return dec


class DiVAE(VQ):
    """DiVAE ("Diffusion VQ-VAE") model = simple encoder + diffusion decoder with 
    a discrete bottleneck, inspired by https://arxiv.org/abs/2206.00386. 
    
    Args:
        dec_type: String identifier specifying the decoder architecture.
          See vq/models/unet/unet.py and vq/models/uvit.py for available architectures.
        num_train_timesteps: Number of diffusion timesteps to use for training.
        cls_free_guidance_dropout: Dropout probability for classifier-free guidance.
        masked_cfg: Whether or not to randomly mask out conditioning tokens.
          cls_free_guidance_dropout must be > 0.0 for this to have any effect, and
          decides how often masking is performed. E.g. with 0.5, half of the time
          the conditioning tokens will be randomly masked, and half the time they
          will be kept as is.
        masked_cfg_low: Lower bound of number of tokens to mask out.
        masked_cfg_high: Upper bound of number of tokens to mask out (inclusive).
          Defaults to total number of tokens (H_Q * W_Q) if it is set to None.
        scheduler: String identifier specifying the diffusion scheduler to use.
            Can be 'ddpm' or 'ddim'.
        beta_schedule: String identifier specifying the beta schedule to use for 
          the diffusion process. Can be 'linear', 'squaredcos_cap_v2' (cosine), 
          'shifted_cosine:{shift_amount}'; see vq/scheduling for details.
        prediction_type: String identifier specifying the type of prediction to use.
          Can be 'sample', 'epsilon', or 'v_prediction'; see vq/scheduling for details.
        clip_sample: Whether or not to clip the samples to [-1, 1], at inference only.
        thresholding: Whether or not to use dynamic thresholding  (introduced by Imagen, 
          https://arxiv.org/abs/2205.11487) for the diffusion process, at inference only.
        conditioning: String identifier specifying the way to condition the diffusion 
          decoder. Can be 'concat' or 'xattn'. See models for details (only relevant to UViT).
        dec_transformer_dropout: Dropout rate for the transformer layers in the 
          diffusion decoder (only relevant to UViT models).
        zero_terminal_snr: Whether or not to enforce zero terminal SNR, i.e. the SNR
          at the last timestep is set to zero. This is useful for preventing the model 
          from "cheating" by using information in the last timestep to reconstruct the image.
          See https://arxiv.org/abs/2305.08891.
        image_size_dec: Image size for the decoder. Defaults to image_size. 
          Change this when loading weights from a tokenizer decoder trained on a 
          different image size.
        config: Dictionary containing the model configuration. Only used when loading
            from Huggingface Hub. Ignore otherwise.
    """
    def __init__(self, 
                 dec_type: str = 'unet_patched',
                 num_train_timesteps: int = 1000, 
                 cls_free_guidance_dropout: float = 0.0,
                 masked_cfg: bool = False, 
                 masked_cfg_low: int = 0,
                 masked_cfg_high: Optional[int] = None,
                 scheduler: str = 'ddpm',
                 beta_schedule: str = 'squaredcos_cap_v2',
                 prediction_type: str = 'v_prediction',
                 clip_sample: bool = False, 
                 thresholding: bool = True, 
                 conditioning: str = 'concat',
                 dec_transformer_dropout: float = 0.2,
                 zero_terminal_snr: bool = True,
                 image_size_dec: Optional[int] = None,
                 config: Optional[Dict[str, Any]] = None,
                 *args, **kwargs):
        if config is not None:
            config = copy.deepcopy(config)
            self.__init__(**config)
            return
        # Don't want to load the weights just yet
        self.original_ckpt_path = kwargs.get('ckpt_path', None)
        kwargs['ckpt_path'] = None
        super().__init__(*args, **kwargs)
        self.ckpt_path = self.original_ckpt_path
        self.num_train_timesteps = num_train_timesteps
        self.beta_schedule = beta_schedule
        self.prediction_type = prediction_type
        self.clip_sample = clip_sample
        self.thresholding = thresholding
        self.zero_terminal_snr = zero_terminal_snr

        if cls_free_guidance_dropout > 0.0:
            self.cfg_dist = torch.distributions.Bernoulli(probs=cls_free_guidance_dropout)
        else:
            self.cfg_dist = None
        self.masked_cfg = masked_cfg
        self.masked_cfg_low = masked_cfg_low
        self.masked_cfg_high = masked_cfg_high

        # Init diffusion decoder
        image_size_dec = image_size_dec or self.image_size
        if 'unet_' in dec_type:
            self.decoder = getattr(unet, dec_type)(
                in_channels=self.n_channels, 
                out_channels=self.n_channels, 
                cond_channels=self.latent_dim, 
                image_size=image_size_dec,
            )
        elif 'uvit_' in dec_type:
            self.decoder = getattr(uvit, dec_type)(
                sample_size=image_size_dec,
                in_channels=self.n_channels,
                out_channels=self.n_channels,
                cond_dim=self.latent_dim,
                cond_type=conditioning,
                mid_drop_rate=dec_transformer_dropout,
            )
        else:
            raise NotImplementedError(f'dec_type {dec_type} not implemented.')
        
        # Init training diffusion scheduler / default pipeline for generation
        scheduler_cls = DDPMScheduler if scheduler == 'ddpm' else DDIMScheduler
        self.noise_scheduler = scheduler_cls(
            num_train_timesteps=num_train_timesteps, 
            thresholding=thresholding,
            clip_sample=clip_sample,
            beta_schedule=beta_schedule,
            prediction_type=prediction_type,
            zero_terminal_snr=zero_terminal_snr,
        )
        self.pipeline = PipelineCond(model=self.decoder, scheduler=self.noise_scheduler)

        # Load checkpoint
        if self.ckpt_path is not None:
            self.init_from_ckpt(self.ckpt_path, ignore_keys=self.ignore_keys)

    def sample_mask(self, quant: torch.Tensor, low: int = 0, high: Optional[int] = None) -> torch.BoolTensor:
        """Returns a mask of shape B H_Q W_Q, where True = masked-out, False = keep.

        Args:
            quant: Dequantized latent tensor of shape B D_Q H_Q W_Q
            low: Lower bound of number of tokens to mask out
            high: Upper bound of number of tokens to mask out (inclusive). 
              Defaults to total number of tokens (H_Q * W_Q) if it is set to None.

        Returns:
            Boolean mask of shape B H_Q W_Q
        """
        B, _, H_Q, W_Q = quant.shape
        num_tokens = H_Q * W_Q
        high = high if high is not None else num_tokens
        
        zero_idxs = torch.randint(low=low, high=high+1, size=(B,), device=quant.device)
        noise = torch.rand(B, num_tokens, device=quant.device)
        ids_arange_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
        mask = torch.where(ids_arange_shuffle < zero_idxs.unsqueeze(1), 0, 1)
        mask = rearrange(mask, 'b (h w) -> b h w', h=H_Q, w=W_Q).bool()
        
        return mask

    def _get_pipeline(self, scheduler: Optional[SchedulerMixin] = None) -> PipelineCond:
        """Creates a conditional diffusion pipeline with the given scheduler.

        Args:
            scheduler: Scheduler to use for the diffusion pipeline.
              If None, the default scheduler will be used.

        Returns:
            Conditional diffusion pipeline.
        """
        return PipelineCond(model=self.decoder, scheduler=scheduler) if scheduler is not None else self.pipeline

    def decode_quant(self, 
                     quant: torch.Tensor, 
                     timesteps: Optional[int] = None, 
                     scheduler: Optional[SchedulerMixin] = None, 
                     generator: Optional[torch.Generator] = None, 
                     image_size: Optional[Union[Tuple[int, int], int]] = None, 
                     verbose: bool = False, 
                     scheduler_timesteps_mode: str = 'trailing', 
                     orig_res: Optional[Union[torch.LongTensor, Tuple[int, int]]] = None) -> torch.Tensor:
        """Decodes quantized latent codes back to an image.

        Args:
            quant: Quantized latent code of shape B D_Q H_Q W_Q
            timesteps: Number of diffusion timesteps to use. Defaults to self.num_train_timesteps.
            scheduler: Scheduler to use for the diffusion pipeline. Defaults to the training scheduler.
            generator: Random number generator to use for sampling. By default generations are stochastic.
            image_size: Image size to use for the diffusion pipeline. Defaults to decoder image size.
            verbose: Whether or not to print progress bar.
            scheduler_timesteps_mode: The mode to use for DDIMScheduler. One of `trailing`, `linspace`, 
              `leading`. See https://arxiv.org/abs/2305.08891 for more details.
            orig_res: The original resolution of the image to condition the diffusion on. Ignored if None.
              See SDXL https://arxiv.org/abs/2307.01952 for more details.

        Returns:
            Decoded image tensor of shape B C H W
        """
        pipeline = self._get_pipeline(scheduler)
        dec = pipeline(
            quant, timesteps=timesteps, generator=generator, image_size=image_size, 
            verbose=verbose, scheduler_timesteps_mode=scheduler_timesteps_mode, orig_res=orig_res
        )
        return dec
    
    def decode_tokens(self, tokens: torch.LongTensor, **kwargs) -> torch.Tensor:
        """See `decode_quant` for details on the optional args."""
        return super().decode_tokens(tokens, **kwargs)

    def autoencode(self, 
                   input_clean: torch.Tensor, 
                   timesteps: Optional[int] = None, 
                   scheduler: Optional[SchedulerMixin] = None, 
                   generator: Optional[torch.Generator] = None, 
                   verbose: bool = True, 
                   scheduler_timesteps_mode: str = 'trailing', 
                   orig_res: Optional[Union[torch.LongTensor, Tuple[int, int]]] = None, 
                   **kwargs) -> torch.Tensor:
        """Autoencodes an input image tensor by encoding it, quantizing the latent code, 
            and decoding it back to an image.

        Args:
            input_clean: Input image tensor of shape B C H W
              or B H W in case of semantic segmentation
            timesteps: Number of diffusion timesteps to use. Defaults to self.num_train_timesteps.
            scheduler: Scheduler to use for the diffusion pipeline. Defaults to the training scheduler.
            generator: Random number generator to use for sampling. By default generations are stochastic.
            verbose: Whether or not to print progress bar.
            scheduler_timesteps_mode: The mode to use for DDIMScheduler. One of `trailing`, `linspace`, 
              `leading`. See https://arxiv.org/abs/2305.08891 for more details.
            orig_res: The original resolution of the image to condition the diffusion on. Ignored if None.
              See SDXL https://arxiv.org/abs/2307.01952 for more details.
        
        Returns:
            Reconstructed image tensor of shape B C H W
        """
        pipeline = self._get_pipeline(scheduler)
        quant, _, _ = self.encode(input_clean)
        image_size = input_clean.shape[-1]
        dec = pipeline(
            quant, timesteps=timesteps, generator=generator, image_size=image_size, 
            verbose=verbose, scheduler_timesteps_mode=scheduler_timesteps_mode, orig_res=orig_res
        )
        return dec

    def forward(self, 
                input_clean: torch.Tensor, 
                input_noised: torch.Tensor, 
                timesteps: Union[torch.Tensor, float, int], 
                cond_mask: Optional[torch.Tensor] = None, 
                orig_res: Optional[Union[torch.LongTensor, Tuple[int, int]]] = None) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward pass of the encoder, quantizer, and decoder.

        Args:
            input_clean: Clean input image tensor of shape B C H W
              or B H W in case of semantic segmentation. Used for encoding.
            input_noised: Noised input image tensor of shape B C H W. Used as 
              input to the diffusion decoder.
            timesteps: Timesteps for conditioning the diffusion decoder on.
            cond_mask: Optional mask for the diffusion conditioning. 
              True = masked-out, False = keep.
            orig_res: The original resolution of the image to condition the diffusion on. Ignored if None.
              See SDXL https://arxiv.org/abs/2307.01952 for more details.
        
        Returns:
            dec: Decoded image tensor of shape B C H W
            code_loss: Codebook loss
        """
        with torch.no_grad() if self.freeze_enc else nullcontext():
            quant, code_loss, _ = self.encode(input_clean)

        if cond_mask is None and self.cfg_dist is not None and self.training:
            # Create a random mask for each batch element. True = masked-out, False = keep
            B, _, H_Q, W_Q = quant.shape
            cond_mask = self.cfg_dist.sample((B,)).to(quant.device, dtype=torch.bool)
            cond_mask = repeat(cond_mask, 'b -> b h w', h=H_Q, w=W_Q)
            if self.masked_cfg:
                mask = self.sample_mask(quant, low=self.masked_cfg_low, high=self.masked_cfg_high)
                cond_mask = (mask * cond_mask)
        
        dec = self.decoder(input_noised, timesteps, quant, cond_mask=cond_mask, orig_res=orig_res)
        return dec, code_loss


class VQControlNet(VQ):
    """VQControlNet model = simple pertrained encoder + a ControlNet decoder conditioned on tokens.
    
    Args:
        sd_path: Path to the Stable Diffusion weights for training the ControlNet.
        image_size_sd: Stable diffusion input image size. Defaults to image_size.
            Change this to the image size that Stable Diffusion is trained on.
        pretrained_cn: Whether to use pretrained Stable Diffusion weights for the control model.
        cls_free_guidance_dropout: Dropout probability for classifier-free guidance.
        masked_cfg: Whether or not to randomly mask out conditioning tokens.
          cls_free_guidance_dropout must be > 0.0 for this to have any effect, and
          decides how often masking is performed. E.g. with 0.5, half of the time
          the conditioning tokens will be randomly masked, and half the time they
          will be kept as is.
        masked_cfg_low: Lower bound of number of tokens to mask out.
        masked_cfg_high: Upper bound of number of tokens to mask out (inclusive).
          Defaults to total number of tokens (H_Q * W_Q) if it is set to None.
        enable_xformer: Enables xFormers.
        adapter: Path to the adapter model weights. The adapter model is initialy trained to map
            the tokens to a VAE latent-like representation. Then the output of the adapter model
            is passed as the condition to train the ControlNet. By default there is no adapter usage.
        config: Dictionary containing the model configuration. Only used when loading
            from Huggingface Hub. Ignore otherwise.
    """
    def __init__(self,  
                 sd_path: str = "runwayml/stable-diffusion-v1-5",
                 image_size_sd: Optional[int] = None,
                 pretrained_cn: bool = False,
                 cls_free_guidance_dropout: float = 0.0,
                 masked_cfg: bool = False, 
                 masked_cfg_low: int = 0,
                 masked_cfg_high: Optional[int] = None,
                 enable_xformer: bool = False,
                 adapter: Optional[str] = None,
                 config: Optional[Dict[str, Any]] = None,
                 *args, **kwargs):
        if config is not None:
            config = copy.deepcopy(config)
            self.__init__(**config)
            return
        # Don't want to load the weights just yet
        self.original_ckpt_path = kwargs.get('ckpt_path', None)
        kwargs['ckpt_path'] = None
        super().__init__(*args, **kwargs)
        self.ckpt_path = self.original_ckpt_path

        if cls_free_guidance_dropout > 0.0:
            self.cfg_dist = torch.distributions.Bernoulli(probs=cls_free_guidance_dropout)
        else:
            self.cfg_dist = None
        self.masked_cfg = masked_cfg
        self.masked_cfg_low = masked_cfg_low
        self.masked_cfg_high = masked_cfg_high
        self.image_size_sd = self.image_size if image_size_sd is None else image_size_sd

        sd_pipeline = StableDiffusionPipeline.from_pretrained(sd_path)
        try:
            import xformers
            XFORMERS_AVAILABLE = True
        except ImportError:
            print("xFormers not available")
            XFORMERS_AVAILABLE = False
        enable_xformer = enable_xformer and XFORMERS_AVAILABLE
        if enable_xformer:
            print('Enabling xFormer for Stable Diffusion')
            sd_pipeline.enable_xformers_memory_efficient_attention()

        self.decoder = getattr(controlnet, 'controlnet')(
            in_channels=4, 
            cond_channels=self.latent_dim,
            sd_pipeline=sd_pipeline,
            image_size=self.image_size_sd,
            pretrained_cn=pretrained_cn,
            enable_xformer=enable_xformer,
            adapter=adapter,
        )
        
        # Use the defualt controlnet pipeline both for training and generation
        self.noise_scheduler = PNDMScheduler(**sd_pipeline.scheduler.config)
        self.vae = sd_pipeline.vae
        self._freeze_vae()
        
        self.pipeline = PipelineCond(model=self.decoder, scheduler=self.noise_scheduler)

        # Load checkpoint
        if self.ckpt_path is not None:
            self.init_from_ckpt(self.ckpt_path, ignore_keys=self.ignore_keys)

    def sample_mask(self, quant: torch.Tensor, low: int = 0, high: Optional[int] = None) -> torch.BoolTensor:
        """Returns a mask of shape B H_Q W_Q, where True = masked-out, False = keep.

        Args:
            quant: Dequantized latent tensor of shape B D_Q H_Q W_Q
            low: Lower bound of number of tokens to mask out
            high: Upper bound of number of tokens to mask out (inclusive). 
              Defaults to total number of tokens (H_Q * W_Q) if it is set to None.

        Returns:
            Boolean mask of shape B H_Q W_Q
        """
        B, _, H_Q, W_Q = quant.shape
        num_tokens = H_Q * W_Q
        high = high if high is not None else num_tokens
        
        zero_idxs = torch.randint(low=low, high=high+1, size=(B,), device=quant.device)
        noise = torch.rand(B, num_tokens, device=quant.device)
        ids_arange_shuffle = torch.argsort(noise, dim=1)  # ascend: small is keep, large is remove
        mask = torch.where(ids_arange_shuffle < zero_idxs.unsqueeze(1), 0, 1)
        mask = rearrange(mask, 'b (h w) -> b h w', h=H_Q, w=W_Q).bool()
        
        return mask

    def decode_quant(self, 
                     quant: torch.Tensor, 
                     timesteps: Optional[int] = None, 
                     generator: Optional[torch.Generator] = None, 
                     image_size: Optional[Union[Tuple[int, int], int]] = None, 
                     verbose: bool = False, 
                     vae_decode: bool = False,
                     scheduler_timesteps_mode: str = 'leading', 
                     prompt: Optional[Union[List[str], str]]= None,
                     orig_res: Optional[Union[torch.LongTensor, Tuple[int, int]]] = None,
                     guidance_scale: int = 0.0, 
                     cond_scale: int = 1.0) -> torch.Tensor:
        """Decodes quantized latent codes back to an image.

        Args:
            quant: Quantized latent code of shape B D_Q H_Q W_Q
            timesteps: Number of diffusion timesteps to use. Defaults to self.num_train_timesteps.
            generator: Random number generator to use for sampling. By default generations are stochastic.
            image_size: Image size to use for the diffusion pipeline. Defaults to decoder image size.
            verbose: Whether or not to print progress bar.
            vae_decode: If set to True decodes the latent output of stable diffusion
            scheduler_timesteps_mode: The mode to use for DDIMScheduler. One of `trailing`, `linspace`, 
              `leading`. See https://arxiv.org/abs/2305.08891 for more details.
            prompt: the input prompts for controlnet.
            orig_res: The original resolution of the image to condition the diffusion on. Ignored if None.
              See SDXL https://arxiv.org/abs/2307.01952 for more details.
            guidance_scale: Classifier free guidance scale.
            cond_scale: Scale that is multiplied by the output of control model before being added 
                to stable diffusion layers in controlnet.

        Returns:
            Decoded tensor of shape B C H W
        """
        dec = self.pipeline(
            quant, timesteps=timesteps, generator=generator, image_size=image_size, 
            verbose=verbose, scheduler_timesteps_mode=scheduler_timesteps_mode, prompt=prompt,
            guidance_scale=guidance_scale, cond_scale=cond_scale,
        )

        if vae_decode:
            return self.vae_decode(dec)

        return dec

    def decode_tokens(self, tokens: torch.LongTensor, **kwargs) -> torch.Tensor:
        """See `decode_quant` for details on the optional args."""
        return super().decode_tokens(tokens, **kwargs)

    @torch.no_grad()
    def vae_encode(self, x: torch.Tensor):
        """Encodes the input image into vae latent representaiton.
        
        Args:
            x: Input images

        Returns:
           Encoded latent tensor of shape B C H W 
        """
        z = self.vae.encode(x).latent_dist.sample()
        z = z * self.vae.config.scaling_factor
        return z
    
    @torch.no_grad()
    def vae_decode(self, x: torch.Tensor, clip: bool = True) -> torch.Tensor:
        """Decodes the vae latent representation into vae latent representaiton.
        
        Args:
            x: VAE latent representation
            clip: If set True clips the decoded image between -1 and 1.

        Returns:
           Decoded image of shape B C H W 
        """
        x = self.vae.decode(x / self.vae.config.scaling_factor).sample
        if clip:
            x = torch.clip(x, min=-1, max=1)
        return x
    
    def autoencode(self, 
                   input_clean: torch.Tensor, 
                   timesteps: Optional[int] = None, 
                   generator: Optional[torch.Generator] = None, 
                   image_size: Optional[Union[Tuple[int, int], int]] = None, 
                   verbose: bool = False, 
                   vae_decode: bool = False,
                   scheduler_timesteps_mode: str = 'leading', 
                   prompt: Optional[Union[List[str], str]]= None,
                   orig_res: Optional[Union[torch.LongTensor, Tuple[int, int]]] = None,
                   guidance_scale: int = 0.0, 
                   cond_scale: int = 1.0) -> torch.Tensor:
        """Autoencodes an input image tensor by encoding it, quantizing the latent code, 
            and decoding it back to an image.

        Args:
            input_clean: Input image tensor of shape B C H W
              or B H W in case of semantic segmentation
            timesteps: Number of diffusion timesteps to use. Defaults to self.num_train_timesteps.
            scheduler: Scheduler to use for the diffusion pipeline. Defaults to the training scheduler.
            generator: Random number generator to use for sampling. By default generations are stochastic.
            image_size: Image size to use for the diffusion pipeline. Defaults to decoder image size.
            verbose: Whether or not to print progress bar.
            vae_decode: If set to True, decodes the latent output of stable diffusion
            scheduler_timesteps_mode: The mode to use for DDIMScheduler. One of `trailing`, `linspace`, 
              `leading`. See https://arxiv.org/abs/2305.08891 for more details.
            prompt: the input prompts for controlnet.
            orig_res: The original resolution of the image to condition the diffusion on. Ignored if None.
              See SDXL https://arxiv.org/abs/2307.01952 for more details.
            guidance_scale: Classifier free guidance scale.
            cond_scale: Scale that is multiplied by the output of control model before being added 
                to stable diffusion layers in controlnet.
        
        Returns:
            Reconstructed tensor of shape B C H W
        """
        quant, _, _ = self.encode(input_clean)
        dec = self.pipeline(
            quant, timesteps=timesteps, generator=generator,
            verbose=verbose, scheduler_timesteps_mode=scheduler_timesteps_mode, prompt=prompt,
            guidance_scale=guidance_scale, cond_scale=cond_scale,
        )

        if vae_decode:
            return self.vae_decode(dec)

        return dec

    def forward(self, 
                input_clean: torch.Tensor, 
                input_noised: torch.Tensor, 
                timesteps: Union[torch.Tensor, float, int], 
                cond_mask: Optional[torch.Tensor] = None, 
                prompt: Optional[Union[List[str], str]] = None,
                orig_res: Optional[Union[torch.LongTensor, Tuple[int, int]]] = None) -> Tuple[torch.Tensor, torch.Tensor]:
        """Forward pass of the encoder, quantizer, and decoder.

        Args:
            input_clean: Clean input image tensor of shape B C H W
              or B H W in case of semantic segmentation. Used for encoding.
            input_noised: Noised input image tensor of shape B C H W. Used as 
              input to the diffusion decoder.
            timesteps: Timesteps for conditioning the diffusion decoder on.
            cond_mask: Optional mask for the diffusion conditioning. 
              True = masked-out, False = keep.
            prompt: ControlNet input prompt. Defaults to an empty string.
            orig_res: The original resolution of the image to condition the diffusion on. Ignored if None.
              See SDXL https://arxiv.org/abs/2307.01952 for more details.
        
        Returns:
            dec: Decoded image tensor of shape B C H W
            code_loss: Codebook loss
        """
        with torch.no_grad() if self.freeze_enc else nullcontext():
            quant, code_loss, _ = self.encode(input_clean)

        if cond_mask is None and self.cfg_dist is not None and self.training:
            # Create a random mask for each batch element. True = masked-out, False = keep
            B, _, H_Q, W_Q = quant.shape
            cond_mask = self.cfg_dist.sample((B,)).to(quant.device, dtype=torch.bool)
            cond_mask = repeat(cond_mask, 'b -> b h w', h=H_Q, w=W_Q)
            if self.masked_cfg:
                mask = self.sample_mask(quant, low=self.masked_cfg_low, high=self.masked_cfg_high)
                cond_mask = (mask * cond_mask)
        
        dec = self.decoder(input_noised, timesteps, quant, cond_mask=cond_mask, orig_res=orig_res, prompt=prompt)
        return dec, code_loss

    def _freeze_vae(self):
        """Freezes VAE"""
        for param in self.vae.parameters():
            param.requires_grad = False