Spaces:
Runtime error
Runtime error
File size: 48,637 Bytes
3424266 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 |
# Copyright 2024 EPFL and Apple Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import random
import copy
from functools import partial
from typing import Any, Dict, Optional, Tuple, Union
import torch
from einops import rearrange, repeat
from torch import nn
import torch.nn.functional as F
from fourm.utils.timm.registry import register_model
from huggingface_hub import PyTorchModelHubMixin
from .fm_utils import Block, DecoderBlock, LayerNorm
from fourm.data.modality_info import MODALITY_INFO
# Model definitions
__all__ = [
# GELU models
'fm_tiny_6e_6d_gelu',
'fm_small_8e_8d_gelu',
'fm_base_12e_12d_gelu',
'fm_large_24e_24d_gelu',
'fm_xlarge_24e_24d_gelu',
# SwiGLU models
'fm_tiny_6e_6d_swiglu_nobias',
'fm_small_8e_8d_swiglu_nobias',
'fm_base_12e_12d_swiglu_nobias',
'fm_large_24e_24d_swiglu_nobias',
'fm_xlarge_24e_24d_swiglu_nobias',
# SwiGLU + QKNorm models
'fm_base_12e_12d_swiglu_qknorm_nobias',
'fm_large_24e_24d_swiglu_qknorm_nobias',
'fm_xlarge_24e_24d_swiglu_qknorm_nobias',
]
class FourM(nn.Module):
"""4M model.
Args:
encoder_embeddings: Dict of encoder embedding modules.
decoder_embeddings: Dict of decoder embedding modules.
modality_info: Dict containing modality information.
dim: Embedding dimension.
encoder_depth: Number of encoder blocks.
decoder_depth: Number of decoder blocks.
num_heads: Number of attention heads.
mlp_ratio: Ratio of mlp hidden dim to embedding dim.
qkv_bias: If True, add a learnable bias to query, key, value projections.
proj_bias: If True, add a learnable bias to the last projection of the attention block.
mlp_bias: If True, add a learnable bias to linear layers in the MLP / feed-forward.
drop_path_rate_encoder: Stochastic depth rate for encoder.
drop_path_rate_decoder: Stochastic depth rate for decoder.
shared_drop_path: If True, shares drop path between encoder and decoder.
act_layer: Activation layer to be used.
norm_layer: Normalization layer to be used.
gated_mlp: If True, make the feedforward gated (e.g., SwiGLU).
qk_norm: If True, applies normalization to queries and keys (QKNorm).
decoder_causal_mask: If True, decoder will use a causal mask for all tokens.
decoder_sep_mask: If True, decoder attention is restricted to within each modality only.
num_register_tokens: Number of register tokens.
use_act_checkpoint: If True, use activation checkpoint for each block.
"""
def __init__(self,
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
modality_info: Dict[str, Any],
dim: int = 768,
encoder_depth: int = 12,
decoder_depth: int = 12,
num_heads: int = 12,
mlp_ratio: float = 4.0,
qkv_bias: bool = True,
proj_bias: bool = True,
mlp_bias: bool = True,
drop_path_rate_encoder: float = 0.0,
drop_path_rate_decoder: float = 0.0,
shared_drop_path: bool = False,
act_layer: nn.Module = nn.GELU,
norm_layer: Union[partial, nn.Module] = partial(LayerNorm, eps=1e-6),
gated_mlp: bool = False, # Make the feedforward gated for e.g. SwiGLU
qk_norm: bool = False,
decoder_causal_mask: bool = False,
decoder_sep_mask: bool = True,
num_register_tokens: int = 0,
use_act_checkpoint: bool = False,
share_modality_embeddings: bool = True,
):
super().__init__()
self.modality_info = modality_info
self.dim = dim
self.decoder_causal_mask = decoder_causal_mask
self.decoder_sep_mask = decoder_sep_mask
self.init_std = 0.02
self.use_act_checkpoint = use_act_checkpoint
self.num_register_tokens = num_register_tokens
# Encoder embeddings & init
self.encoder_modalities = set(encoder_embeddings.keys())
for emb in encoder_embeddings.values():
emb.init(dim_tokens=dim, init_std=self.init_std)
self.encoder_embeddings = nn.ModuleDict(encoder_embeddings)
# Decoder embeddings & init
self.decoder_modalities = set(decoder_embeddings.keys())
for emb in decoder_embeddings.values():
emb.init(dim_tokens=dim, init_std=self.init_std)
self.decoder_embeddings = nn.ModuleDict(decoder_embeddings)
# Share modality embeddings across the encoder and decoder embedding modules
if share_modality_embeddings:
self.share_modality_embeddings()
## Transformer encoder
if shared_drop_path:
dpr_encoder = [x.item() for x in torch.linspace(0, drop_path_rate_encoder, encoder_depth + decoder_depth)][:encoder_depth]
else:
dpr_encoder = [x.item() for x in torch.linspace(0, drop_path_rate_encoder, encoder_depth)] # stochastic depth decay rule
self.encoder = nn.ModuleList([
Block(dim=dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, mlp_bias=mlp_bias,
drop_path=dpr_encoder[i], act_layer=act_layer, norm_layer=norm_layer, gated_mlp=gated_mlp, qk_norm=qk_norm)
for i in range(encoder_depth)
])
self.encoder_norm = norm_layer(dim)
## Transformer decoder
if shared_drop_path:
dpr_decoder = [x.item() for x in torch.linspace(0, drop_path_rate_decoder, encoder_depth + decoder_depth)][encoder_depth:]
else:
dpr_decoder = [x.item() for x in torch.linspace(0, drop_path_rate_decoder, decoder_depth)] # stochastic depth decay rule
# Projection of encoder tokens before adding the embeddings again
self.decoder_proj_context = nn.Linear(dim, dim)
self.decoder = nn.ModuleList([
DecoderBlock(dim=dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, proj_bias=proj_bias, mlp_bias=mlp_bias,
drop_path=dpr_decoder[i], act_layer=act_layer, norm_layer=norm_layer, gated_mlp=gated_mlp, qk_norm=qk_norm)
for i in range(decoder_depth)
])
self.decoder_norm = norm_layer(dim)
self.mask_token = nn.Parameter(torch.zeros(1, 1, dim))
nn.init.normal_(self.mask_token, std=self.init_std)
# Additional register tokens that can be used by the encoder during fine-tuning
if self.num_register_tokens > 0:
self.register_tokens = nn.Parameter(torch.zeros(1, self.num_register_tokens, dim))
nn.init.normal_(self.register_tokens, std=self.init_std)
else:
self.register_tokens = None
# Weight init
self.init_weights()
def share_modality_embeddings(self):
"""Share modality embeddings across the encoder and decoder embedding modules."""
shared_modalities = self.encoder_modalities & self.decoder_modalities
for mod in shared_modalities:
self.decoder_embeddings[mod].mod_emb = self.encoder_embeddings[mod].mod_emb
def init_weights(self):
"""Weight initialization following MAE's initialization scheme"""
for name, m in self.named_modules():
# Skipping tokenizers to avoid reinitializing them
if "tokenizer" in name:
continue
# Linear
elif isinstance(m, nn.Linear):
if 'qkv' in name:
# treat the weights of Q, K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 3 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
elif 'kv' in name:
# treat the weights of K, V separately
val = math.sqrt(6. / float(m.weight.shape[0] // 2 + m.weight.shape[1]))
nn.init.uniform_(m.weight, -val, val)
else:
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
# LayerNorm
elif isinstance(m, nn.LayerNorm) or isinstance(m, LayerNorm):
nn.init.constant_(m.weight, 1.0)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
# Embedding
elif isinstance(m, nn.Embedding):
nn.init.normal_(m.weight, std=self.init_std)
# Conv2d
elif isinstance(m, nn.Conv2d):
if '.proj' in name:
# From MAE, initialize projection like nn.Linear (instead of nn.Conv2d)
w = m.weight.data
nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
def get_num_layers_encoder(self):
return len(self.encoder)
def get_num_layers_decoder(self):
return len(self.decoder)
def get_num_layers(self):
return self.get_num_layers_encoder() + self.get_num_layers_decoder()
@torch.jit.ignore
def no_weight_decay(self):
no_wd_set = set()
for mod, emb_module in self.encoder_embeddings.items():
if hasattr(emb_module, 'no_weight_decay'):
to_skip = emb_module.no_weight_decay()
to_skip = set([f'encoder_embeddings.{mod}.{name}' for name in to_skip])
no_wd_set = no_wd_set | to_skip
for mod, emb_module in self.decoder_embeddings.items():
if hasattr(emb_module, 'no_weight_decay'):
to_skip = emb_module.no_weight_decay()
to_skip = set([f'decoder_embeddings.{mod}.{name}' for name in to_skip])
no_wd_set = no_wd_set | to_skip
return no_wd_set
def cat_encoder_tensors(self, mod_dict: Dict[str, torch.Tensor]) -> Tuple[torch.Tensor]:
"""Concatenate encoder tensors from different modalities.
Args:
mod_dict (dict): A dictionary containing information for each modality.
Expected keys for each modality are 'x' (input tokens),
'emb' (embeddings), 'input_mask', etc.
Returns:
tuple:
- encoder_tokens_all (torch.Tensor): Concatenated encoder tokens from all modalities. Shape (B, O, D) where O is the total number of all encoder tokens.
- emb_all (torch.Tensor): Concatenated encoder embeddings from all modalities. Shape (B, O, D)
- encoder_mask_all (torch.Tensor): Concatenated boolean masks indicating which tokens are part of the encoder input (set to 0 for valid tokens, 1 otherwise). Shape (B, O)
- mod_mask_all (torch.Tensor): Concatenated integer mask marking the modality type for each encoder token. Shape (B, O)
"""
encoder_tokens_all = []
emb_all = []
encoder_mask_all = []
mod_mask_all = []
for mod, d in mod_dict.items():
encoder_tokens_all.append(d['x'])
emb_all.append(d['emb'])
encoder_mask_all.append(d['input_mask'])
mod_mask_all.append(torch.full_like(d['input_mask'], self.modality_info[mod]['id'], dtype=torch.int16))
encoder_tokens_all = torch.cat(encoder_tokens_all, dim=1)
emb_all = torch.cat(emb_all, dim=1)
encoder_mask_all = torch.cat(encoder_mask_all, dim=1)
mod_mask_all = torch.cat(mod_mask_all, dim=1)
return encoder_tokens_all, emb_all, encoder_mask_all, mod_mask_all
def cat_decoder_tensors(self, mod_dict: Dict[str, Dict[str, torch.Tensor]]) -> Tuple[torch.Tensor]:
"""Concatenate decoder tensors from different modalities.
Args:
mod_dict (dict): A dictionary containing information for each modality.
Expected keys for each modality include 'x' (input tokens),
'ids' (target IDs), 'emb' (embeddings), 'target_mask', 'decoder_attention_mask', etc.
Returns:
tuple:
- decoder_tokens_all (torch.Tensor): Concatenated decoder tokens from all modalities. Shape (B, P, D) where P is the total number of all decoder tokens.
- emb_all (torch.Tensor): Concatenated decoder embeddings from all modalities. Shape (B, P, D)
- decoder_mask_all (torch.Tensor): Concatenated boolean masks indicating which tokens are part of the decoder input / target (set to 0 for valid tokens, 1 otherwise). Shape (B, P)
- target_ids_all (torch.Tensor): Concatenated target IDs from all modalities. Shape (B, P)
- attention_mask_all (torch.Tensor): Concatenated attention masks in compressed format, needs to be passed to adapt_decoder_attention_mask() to obtain the final attention mask. Shape (B, P)
- mod_mask_all (torch.Tensor): Concatenated integer mask marking the modality type for each decoder token. Shape (B, P)
"""
decoder_tokens_all = []
target_ids_all = []
emb_all = []
decoder_mask_all = []
attention_mask_all = []
mod_mask_all = []
# Shuffle order in which modalities are provided (useful for modality causal mask)
mod_dict = {mod: d for mod, d in random.sample(mod_dict.items(), len(mod_dict))}
for mod, d in mod_dict.items():
if self.modality_info[mod]['type'] in ['seq', 'seq_emb', 'seq_token']:
# Important: This makes the assumption that the target sequence appears sequentially
# before sorting / gathering
decoder_tokens_all.append(d['x'][:, :-1])
target_ids_all.append(d['ids'][:, 1:]) # Shifted left
emb_all.append(d['emb'][:, :-1])
# Logical or with left shifting removes the last unmasked position
decoder_mask_all.append(torch.logical_or(d['target_mask'][:, 1:], d['target_mask'][:, :-1]))
# Add attention mask ids
attention_mask_all.append(d['decoder_attention_mask'][:, :-1])
mod_mask_all.append(torch.full_like(d['ids'][:, :-1], self.modality_info[mod]['id'], dtype=torch.int16))
else:
# Important: For 2d / image modalities, the decoder input tokens are replaced by the mask token
decoder_tokens_all.append(torch.zeros_like(d['x']) + self.mask_token) # Replace x by mask token
target_ids_all.append(d['ids'])
emb_all.append(d['emb'])
decoder_mask_all.append(d['target_mask'])
attention_mask_all.append(d['decoder_attention_mask'])
mod_mask_all.append(torch.full_like(d['ids'], self.modality_info[mod]['id'], dtype=torch.int16))
decoder_tokens_all = torch.cat(decoder_tokens_all, dim=1)
emb_all = torch.cat(emb_all, dim=1)
decoder_mask_all = torch.cat(decoder_mask_all, dim=1)
target_ids_all = torch.cat(target_ids_all, dim=1)
attention_mask_all = torch.cat(attention_mask_all, dim=1)
mod_mask_all = torch.cat(mod_mask_all, dim=1)
return decoder_tokens_all, emb_all, decoder_mask_all, target_ids_all, attention_mask_all, mod_mask_all
def forward_mask_encoder(self, mod_dict: Dict[str, Dict[str, torch.Tensor]], num_encoder_tokens: int) -> Tuple[torch.Tensor]:
"""Concatenates and mask encoder tensors based on provided modality information.
This function consolidates encoder tokens from multiple modalities, then selects a specified number of them based on modality information (i.e. masking).
Args:
mod_dict (dict): Dictionary containing tensors for different modalities.
It is expected to have keys for each modality and values
containing the modalities' associated tensors.
num_encoder_tokens (int): Number of encoder tokens to retain after masking.
Returns:
tuple:
- encoder_tokens (torch.Tensor): Selected encoder tokens from all modalities. Shape (B, N, D) where N is the number of selected encoder tokens.
- encoder_emb (torch.Tensor): Corresponding embeddings for encoder tokens. Shape (B, N, D)
- encoder_mask (torch.Tensor): A boolean mask indicating which encoder tokens are valid (set to 0 for valid tokens, 1 otherwise). Shape (B, 1, N)
- mod_mask (torch.Tensor): An integer mask marking the modality type for each encoder token (with -1 indicating unassigned pad tokens). Shape (B, N)
Notes:
- If `num_register_tokens` is set and greater than 0, register tokens are added at the beginning of the sequence.
"""
B = list(mod_dict.values())[0]['tensor'].shape[0]
encoder_tokens_all, emb_all, encoder_mask_all, mod_mask_all = self.cat_encoder_tensors(mod_dict)
# Add arange multiplied by small constant to mask so they get sorted in a deterministic way
mask_arange = torch.arange(encoder_mask_all.shape[1], device=encoder_mask_all.device).unsqueeze(0) * 1e-6
ids_shuffle = torch.argsort(encoder_mask_all + mask_arange, dim=1)
# ids_restore = torch.argsort(ids_shuffle, dim=1)
ids_keep = ids_shuffle[:, :num_encoder_tokens]
encoder_tokens = torch.gather(encoder_tokens_all, dim=1,
index=repeat(ids_keep, "b n -> b n d", d=encoder_tokens_all.shape[2]))
encoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
encoder_mask = torch.gather(encoder_mask_all, dim=1, index=ids_keep)
mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
if self.num_register_tokens > 0:
register_tokens = repeat(self.register_tokens, '() n d -> b n d', b=B)
# We add register tokens at the beginning of the sequence
encoder_tokens = torch.cat([register_tokens, encoder_tokens], dim=1)
encoder_emb = torch.cat([torch.zeros_like(register_tokens), encoder_emb], dim=1)
encoder_mask = torch.cat([torch.zeros((B, register_tokens.shape[1]), dtype=torch.bool, device=encoder_mask.device), encoder_mask], dim=1)
mod_mask = torch.cat([torch.full((B, register_tokens.shape[1]), -1, dtype=torch.int16, device=mod_mask.device), mod_mask], dim=1)
encoder_tokens[encoder_mask] = 0.
encoder_emb[encoder_mask] = 0.
mod_mask[encoder_mask] = -1
# Mask could be of shape 'b n1 n2' but not needed for masked_fill
# This means this mask can then be re-used for decoder cross-attention
encoder_mask = rearrange(encoder_mask, 'b n2 -> b 1 n2')
return encoder_tokens, encoder_emb, encoder_mask, mod_mask
def forward_mask_decoder(self, mod_dict: Dict[str, Dict[str, torch.Tensor]], num_decoder_tokens: int) -> Tuple[torch.Tensor]:
"""Concatenates and mask decoder tensors based on provided modality information.
This function consolidates decoder tokens from multiple modalities, selects a specified number of them based on modality information, and applies appropriate masking.
Args:
mod_dict (dict): Dictionary containing tensors for different modalities.
It is expected to have keys for each modality and values
containing the modalities' associated tensors.
num_decoder_tokens (int): Number of decoder tokens to retain after masking.
Returns:
tuple:
- decoder_tokens (torch.Tensor): Selected decoder tokens from all modalities. Shape (B, M, D) where M is the number of selected decoder tokens.
- decoder_emb (torch.Tensor): Corresponding embeddings for decoder tokens. Shape (B, M, D)
- decoder_mask (torch.Tensor): A boolean mask indicating which decoder tokens are valid (set to 0 for valid tokens, 1 otherwise). Shape (B, 1, M)
- target_ids (torch.Tensor): IDs of the target tokens corresponding to the decoder tokens. Shape (B, M)
- decoder_attention_mask (torch.Tensor): Mask for the decoder self-attention layers. Shape (B, M, M)
- mod_mask (torch.Tensor): An integer mask marking the modality type for each decoder token (with -1 indicating unassigned pad tokens). Shape (B, M)
"""
# decoder_mask and target_mask are equivalent, we rename it here to harmonize with forward_mask_encoder
decoder_tokens_all, emb_all, decoder_mask_all, target_ids_all, decoder_attention_mask_all, mod_mask_all = self.cat_decoder_tensors(mod_dict)
# Add arange multiplied by small constant to mask so they get sorted in a deterministic way
mask_arange = torch.arange(decoder_mask_all.shape[1], device=decoder_mask_all.device).unsqueeze(0) * 1e-6
ids_shuffle = torch.argsort(decoder_mask_all + mask_arange, dim=1)
# ids_restore = torch.argsort(ids_shuffle, dim=1)
ids_keep = ids_shuffle[:, :num_decoder_tokens]
decoder_tokens = torch.gather(decoder_tokens_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=decoder_tokens_all.shape[2]))
decoder_emb = torch.gather(emb_all, dim=1, index=repeat(ids_keep, "b n -> b n d", d=emb_all.shape[2]))
decoder_mask = torch.gather(decoder_mask_all, dim=1, index=ids_keep)
target_ids = torch.gather(target_ids_all, dim=1, index=ids_keep)
decoder_attention_mask = torch.gather(decoder_attention_mask_all, dim=1, index=ids_keep)
mod_mask = torch.gather(mod_mask_all, dim=1, index=ids_keep)
decoder_tokens[decoder_mask] = 0.
decoder_emb[decoder_mask] = 0.
target_ids[decoder_mask] = 0
decoder_attention_mask = self.adapt_decoder_attention_mask(decoder_attention_mask, mod_mask)
mod_mask[decoder_mask] = -1
# This means this mask can then be re-used for decoder cross-attention
decoder_mask = rearrange(decoder_mask, 'b n2 -> b 1 n2')
return decoder_tokens, decoder_emb, decoder_mask, target_ids, decoder_attention_mask, mod_mask
def adapt_decoder_attention_mask(self, decoder_attention_mask: torch.Tensor, mod_mask=Optional[torch.Tensor]) -> torch.Tensor:
"""
Transforms the compressed decoder attention mask to a full attention mask based on the specified constraints.
Args:
decoder_attention_mask (torch.Tensor): Initial attention mask indicating attention constraints. Shape (B, M) where M is the number of the decoder tokens.
mod_mask (torch.Tensor, optional): Modality mask to separate attention masks per modality. Shape (B, M)
Returns:
torch.Tensor: Adapted attention mask. Shape (B, M, M) where M is the number of the decoder tokens.
"""
B, N = decoder_attention_mask.shape
if self.decoder_causal_mask:
# For causal mode, tokens can only attend to preceding tokens and themselves.
causal_mask = torch.ones((N, N), dtype=torch.bool, device=decoder_attention_mask.device).triu(1)
causal_mask = repeat(causal_mask, "n1 n2 -> b n1 n2", b=B)
adapted_attention_mask = causal_mask
else:
# Cumulatively sum the attention mask to determine token-wise attention behavior.
# Examples:
# Mask [4, 0, 0, 0] -> Cumsum: [4, 4, 4, 4] -> All tokens attend to each other.
# Mask [1, 1, 1, 1] -> Cumsum: [1, 2, 3, 4] -> Strict autoregressive behavior.
# Mask [2, 0, 1, 1] -> Cumsum: [2, 2, 3, 4] -> Tokens 1 and 2 attend to each other, token 3 attends to tokens 1-3, and token 4 to all.
attention_arange = torch.arange(N, device=decoder_attention_mask.device)
attention_arange = repeat(attention_arange, "n2 -> b n1 n2", b=B, n1=N)
cumsum_mask = torch.cumsum(decoder_attention_mask, dim=-1)
cumsum_mask = rearrange(cumsum_mask, "b n -> b n 1")
adapted_attention_mask = (attention_arange >= cumsum_mask)
if self.decoder_sep_mask:
# Separate attention between tokens based on their modality using mod_mask.
sep_mask = repeat(mod_mask, "b n2 -> b n1 n2", n1=N) != repeat(mod_mask, "b n1 -> b n1 n2", n2=N)
adapted_attention_mask = adapted_attention_mask | sep_mask
return adapted_attention_mask
def forward_encoder(self,
x: torch.Tensor,
encoder_mask: torch.Tensor) -> torch.Tensor:
"""Forward pass for the encoder.
Args:
x (torch.Tensor): Encoder input tokens. Shape (B, N, D) where N is the number of encoder tokens.
encoder_mask (torch.Tensor): Encoder mask indicating which tokens are valid (set to 0 for valid tokens, 1 otherwise). Shape (B, 1, N)
Returns:
torch.Tensor: Encoder output. Shape (B, N, D)
"""
for blk in self.encoder:
x = blk(x, mask=encoder_mask)
x = self.encoder_norm(x)
return x
def forward_decoder(self,
y: torch.Tensor,
context: torch.Tensor,
encoder_mask: torch.Tensor,
decoder_attention_mask: torch.Tensor) -> torch.Tensor:
"""Forward pass for the decoder.
Args:
y (torch.Tensor): Decoder input tokens. Shape (B, M, D).
context (torch.Tensor): Context for the decoder (i.e. encoder output). Shape (B, N, D).
encoder_mask (torch.Tensor): Encoder mask indicating which tokens are valid (set to 0 for valid tokens, 1 otherwise). Shape (B, 1, N).
decoder_attention_mask (torch.Tensor): Decoder attention mask. Shape (B, M, M).
Returns:
torch.Tensor: Decoder output. Shape (B, M, D).
"""
for blk in self.decoder:
y = blk(y, context, sa_mask=decoder_attention_mask, xa_mask=encoder_mask)
y = self.decoder_norm(y)
return y
def forward_logits(self,
y: torch.Tensor,
decoder_mod_dict: Dict[str, Dict[str, torch.Tensor]],
decoder_mod_mask: torch.Tensor,
return_all_logits: bool = False) -> Dict[str, torch.Tensor]:
"""Forward computation of logits for each modality.
Args:
y (torch.Tensor): Decoder output. Shape (B, M, D).
decoder_mod_dict (dict): Dictionary containing tensor information for each modality in the decoder.
decoder_mod_mask (torch.Tensor): Integer mask indicating which tokens belong to which modality. Shape (B, M).
Returns:
Dict[str, torch.Tensor]: Dictionary of logits for each modality.
"""
mod_logits = {}
for mod, d in decoder_mod_dict.items():
idx = self.modality_info[mod]["id"]
if return_all_logits:
logits = self.decoder_embeddings[mod].forward_logits(y)
else:
logits = self.decoder_embeddings[mod].forward_logits(y[decoder_mod_mask == idx])
mod_logits[mod] = logits
return mod_logits
def forward_loss(self,
y: torch.Tensor,
target_ids: torch.Tensor,
decoder_mod_dict: Dict[str, Any],
decoder_mod_mask: torch.Tensor, loss_type: str) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""Computes the loss based on the specified loss type.
Args:
y (torch.Tensor): Decoder output. Shape (B, M, D).
target_ids (torch.Tensor): Ground truth token IDs. Shape (B, M).
decoder_mod_dict (dict): Dictionary containing tensor information for each modality in the decoder.
decoder_mod_mask (torch.Tensor): Integer mask indicating which tokens belong to which modality. Shape (B, M).
loss_type (str): The type of loss to compute. Either 'mod' or 'token'.
Returns:
Tuple[torch.Tensor, Dict[str, torch.Tensor]]: Total loss and dictionary of loss for each modality.
"""
if loss_type in ['mod', 'modality']:
loss, mod_loss = self.forward_mod_loss(y, target_ids, decoder_mod_dict, decoder_mod_mask)
elif loss_type == 'token':
loss, mod_loss = self.forward_token_loss(y, target_ids, decoder_mod_dict, decoder_mod_mask)
else:
raise ValueError("Invalid loss type")
return loss, mod_loss
def forward_mod_loss(self,
y: torch.Tensor,
target_ids: torch.Tensor,
decoder_mod_dict: Dict[str, Any],
decoder_mod_mask: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""Computes the modality-wise loss.
Args:
y (torch.Tensor): Decoder tokens. Shape (B, M, D).
target_ids (torch.Tensor): Ground truth token IDs. Shape (B, M).
decoder_mod_dict (dict): Dictionary containing tensor information for each modality in the decoder.
decoder_mod_mask (torch.Tensor): Mask indicating which tokens belong to which modality. Shape (B, M).
Returns:
Tuple[torch.Tensor, Dict[str, torch.Tensor]]: Total modality loss and dictionary of loss for each modality.
"""
mod_loss = {}
for mod, d in decoder_mod_dict.items():
idx = self.modality_info[mod]["id"]
logits = self.decoder_embeddings[mod].forward_logits(y[decoder_mod_mask == idx])
if logits.numel() == 0:
# If there are no logits / targets, set mod_loss to 0
mod_loss[mod] = torch.zeros(1, device=logits.device)
else:
loss = F.cross_entropy(logits, target_ids[decoder_mod_mask == idx].long(), reduction='mean')
mod_loss[mod] = loss
loss = sum(mod_loss.values()) / len(mod_loss)
return loss, mod_loss
def forward_token_loss(self,
y: torch.Tensor,
target_ids: torch.Tensor,
decoder_mod_dict: Dict[str, Any],
decoder_mod_mask: torch.Tensor) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""Computes the token-wise loss.
Args:
y (torch.Tensor): Decoder tokens. Shape (B, M, D).
target_ids (torch.Tensor): Ground truth token IDs. Shape (B, M).
decoder_mod_dict (dict): Dictionary containing tensor information for each modality in the decoder.
decoder_mod_mask (torch.Tensor): Mask indicating which tokens belong to which modality. Shape (B, M).
Returns:
Tuple[torch.Tensor, Dict[str, torch.Tensor]]: Total token loss and dictionary of loss for each modality.
"""
mod_loss = {}
mod_count = {}
for mod, d in decoder_mod_dict.items():
idx = self.modality_info[mod]["id"]
logits = self.decoder_embeddings[mod].forward_logits(y[decoder_mod_mask == idx])
if logits.numel() == 0:
# If there are no logits / targets, set mod_loss to 0
mod_loss[mod] = torch.zeros(1, device=logits.device)
mod_count[mod] = 0
else:
loss = F.cross_entropy(logits, target_ids[decoder_mod_mask == idx].long(), reduction='mean')
mod_loss[mod] = loss
mod_count[mod] = logits.numel()
loss = sum([mod_loss[mod] * mod_count[mod] for mod in mod_loss.keys()]) / sum(mod_count.values())
return loss, mod_loss
def forward(self,
mod_dict: Dict[str, Dict[str, torch.Tensor]],
num_encoder_tokens: int,
num_decoder_tokens: int,
loss_type: str = 'mod',
return_logits: bool = False) -> Union[Dict[str, torch.Tensor], Tuple[torch.Tensor, Dict[str, torch.Tensor]]]:
"""
Forward pass for the model.
Args:
mod_dict (Dict[str, Dict[str, torch.Tensor]]): Dictionary containing the tensors, masks, and other info for each modality.
- mod_dict[modality_name]["tensor_name"]: Shape can vary based on tensor_name and modality.
num_encoder_tokens (int): Number of tokens to keep for the encoder.
num_decoder_tokens (int): Number of tokens to keep for the decoder.
loss_type (str, optional): The type of loss to compute. Can be 'mod' (average of loss per modality) or 'token' (average loss per token). Default is 'mod'.
return_logits (bool, optional): If True, return the logits. Default is False.
Returns:
Union[dict, tuple]:
- If return_logits is True: Dictionary of logits for each modality.
- Otherwise: Tuple containing the total loss and dictionary of loss for each modality.
"""
# Mod dicts
encoder_mod_dict = {mod: self.encoder_embeddings[mod](d)
for mod, d in mod_dict.items()
if mod in self.encoder_embeddings}
encoder_tokens, encoder_emb, encoder_mask, encoder_mod_mask = self.forward_mask_encoder(encoder_mod_dict, num_encoder_tokens)
decoder_mod_dict = {mod: self.decoder_embeddings[mod].forward_embed(d)
for mod, d in mod_dict.items()
if mod in self.decoder_embeddings}
decoder_tokens, decoder_emb, decoder_mask, target_ids, decoder_attention_mask, decoder_mod_mask = self.forward_mask_decoder(decoder_mod_dict, num_decoder_tokens)
# Encoder
x = encoder_tokens + encoder_emb
x = self.forward_encoder(x, encoder_mask=encoder_mask)
# Decoder
context = self.decoder_proj_context(x) + encoder_emb
y = decoder_tokens + decoder_emb
y = self.forward_decoder(y, context, encoder_mask=encoder_mask, decoder_attention_mask=decoder_attention_mask)
# Logits
if return_logits:
mod_logits = self.forward_logits(y, decoder_mod_dict, decoder_mod_mask, return_all_logits=True)
return mod_logits
# Loss
loss, mod_loss = self.forward_loss(y, target_ids, decoder_mod_dict, decoder_mod_mask, loss_type)
return loss, mod_loss
def freeze_encoder(self, freeze_embeddings=True):
for param in self.encoder.parameters():
param.requires_grad = False
for param in self.encoder_norm.parameters():
param.requires_grad = False
if freeze_embeddings:
for param in self.encoder_embeddings.parameters():
param.requires_grad = False
def freeze_encoder_except_specific_embeddings(self, frozen_embedding_domain):
frozen_embedding_domain = frozen_embedding_domain.split('-')
for param in self.encoder.parameters():
param.requires_grad = False
for param in self.encoder_norm.parameters():
param.requires_grad = False
for name, param in self.encoder_embeddings.named_parameters():
if name.split('.')[0] in frozen_embedding_domain:
param.requires_grad = False
def unfreeze_encoder(self, unfreeze_embeddings=True):
for param in self.encoder.parameters():
param.requires_grad = True
for param in self.encoder_norm.parameters():
param.requires_grad = True
if unfreeze_embeddings:
for param in self.encoder_embeddings.parameters():
param.requires_grad = True
def freeze_decoder(self, freeze_embeddings=True):
for param in self.decoder.parameters():
param.requires_grad = False
for param in self.decoder_norm.parameters():
param.requires_grad = False
if freeze_embeddings:
for param in self.decoder_embeddings.parameters():
param.requires_grad = False
def freeze_decoder_except_specific_embeddings(self, frozen_embedding_domain):
frozen_embedding_domain = frozen_embedding_domain.split('-')
for param in self.decoder.parameters():
param.requires_grad = False
for param in self.decoder_norm.parameters():
param.requires_grad = False
for name, param in self.decoder_embeddings.named_parameters():
if name.split('.')[0] in frozen_embedding_domain:
param.requires_grad = False
def unfreeze_decoder(self, unfreeze_embeddings=True):
for param in self.decoder.parameters():
param.requires_grad = True
for param in self.decoder_norm.parameters():
param.requires_grad = True
if unfreeze_embeddings:
for param in self.decoder_embeddings.parameters():
param.requires_grad = True
def freeze_shared_params(self):
self.freeze_encoder(freeze_embeddings=False)
self.freeze_decoder(freeze_embeddings=False)
def freeze_params_except_specific_embeddings(self, frozen_embedding_domain):
self.freeze_encoder_except_specific_embeddings(frozen_embedding_domain=frozen_embedding_domain)
self.freeze_decoder_except_specific_embeddings(frozen_embedding_domain=frozen_embedding_domain)
def unfreeze_shared_params(self):
self.unfreeze_encoder(unfreeze_embeddings=False)
self.unfreeze_decoder(unfreeze_embeddings=False)
def unfreeze_all(self):
self.unfreeze_encoder(unfreeze_embeddings=True)
self.unfreeze_decoder(unfreeze_embeddings=True)
################################################
# Wrapper for easy loading with Huggingface Hub
class FM(FourM, PyTorchModelHubMixin):
"""Wrapper around FourM for easy loading with Huggingface Hub.
Args:
config (dict): Dictionary containing the model and modality configuration,
used for loading from Huggingface Hub.
"""
def __init__(self, config: dict):
config = copy.deepcopy(config)
all_domains = sorted(list(set(config['domains_in']) | set(config['domains_out'])))
modality_info = {mod: MODALITY_INFO[mod] for mod in all_domains}
encoder_embeddings = {}
for mod in config['domains_in']:
info = modality_info[mod]
if info.get("encoder_embedding", None) is not None:
if info["type"] == "img":
image_size, patch_size = info.get('input_size', config['image_size']), info.get('patch_size', config['patch_size'])
encoder_embeddings[mod] = info["encoder_embedding"](patch_size=patch_size, image_size=image_size)
else:
encoder_embeddings[mod] = info["encoder_embedding"]()
decoder_embeddings = {}
for mod in config['domains_out']:
info = modality_info[mod]
if info.get("decoder_embedding", None) is not None:
if info["type"] == "img":
image_size, patch_size = info.get('input_size', config['image_size']), info.get('patch_size', config['patch_size'])
decoder_embeddings[mod] = info["decoder_embedding"](patch_size=patch_size, image_size=image_size, share_embedding=False)
else:
decoder_embeddings[mod] = info["decoder_embedding"](share_embedding=False)
config['norm_layer'] = partial(LayerNorm, eps=1e-6, bias=config['norm_bias'])
config['act_layer'] = getattr(torch.nn, config['act_layer'])
del config['norm_bias']
del config['domains_in']
del config['domains_out']
del config['image_size']
del config['patch_size']
super().__init__(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
modality_info=modality_info,
**config
)
################################################
# Model definitions
# GELU variants
@register_model
def fm_tiny_6e_6d_gelu(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=6,
decoder_depth=6,
dim=384,
num_heads=6,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
@register_model
def fm_small_8e_8d_gelu(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=8,
decoder_depth=8,
dim=512,
num_heads=8,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
@register_model
def fm_base_12e_12d_gelu(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=12,
decoder_depth=12,
dim=768,
num_heads=12,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
@register_model
def fm_large_24e_24d_gelu(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=24,
decoder_depth=24,
dim=1024,
num_heads=16,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
@register_model
def fm_xlarge_24e_24d_gelu(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=24,
decoder_depth=24,
dim=2048,
num_heads=32,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
**kwargs
)
return model
# SwiGLU variants
@register_model
def fm_tiny_6e_6d_swiglu_nobias(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=6,
decoder_depth=6,
dim=384,
num_heads=6,
mlp_ratio=4,
qkv_bias=False,
proj_bias=False,
mlp_bias=False,
norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
act_layer=nn.SiLU,
gated_mlp=True,
**kwargs
)
return model
@register_model
def fm_small_8e_8d_swiglu_nobias(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=8,
decoder_depth=8,
dim=512,
num_heads=8,
mlp_ratio=4,
qkv_bias=False,
proj_bias=False,
mlp_bias=False,
norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
act_layer=nn.SiLU,
gated_mlp=True,
**kwargs
)
return model
@register_model
def fm_base_12e_12d_swiglu_nobias(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=12,
decoder_depth=12,
dim=768,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
proj_bias=False,
mlp_bias=False,
norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
act_layer=nn.SiLU,
gated_mlp=True,
**kwargs
)
return model
@register_model
def fm_large_24e_24d_swiglu_nobias(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=24,
decoder_depth=24,
dim=1024,
num_heads=16,
mlp_ratio=4,
qkv_bias=False,
proj_bias=False,
mlp_bias=False,
norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
act_layer=nn.SiLU,
gated_mlp=True,
**kwargs
)
return model
@register_model
def fm_xlarge_24e_24d_swiglu_nobias(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=24,
decoder_depth=24,
dim=2048,
num_heads=32,
mlp_ratio=4,
qkv_bias=False,
proj_bias=False,
mlp_bias=False,
norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
act_layer=nn.SiLU,
gated_mlp=True,
**kwargs
)
return model
# SwiGLU + QKNorm variants
@register_model
def fm_base_12e_12d_swiglu_qknorm_nobias(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=12,
decoder_depth=12,
dim=768,
num_heads=12,
mlp_ratio=4,
qkv_bias=False,
proj_bias=False,
mlp_bias=False,
norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
act_layer=nn.SiLU,
gated_mlp=True,
qk_norm=True,
**kwargs
)
return model
@register_model
def fm_large_24e_24d_swiglu_qknorm_nobias(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=24,
decoder_depth=24,
dim=1024,
num_heads=16,
mlp_ratio=4,
qkv_bias=False,
proj_bias=False,
mlp_bias=False,
norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
act_layer=nn.SiLU,
gated_mlp=True,
qk_norm=True,
**kwargs
)
return model
@register_model
def fm_xlarge_24e_24d_swiglu_qknorm_nobias(
encoder_embeddings: Dict[str, nn.Module],
decoder_embeddings: Dict[str, nn.Module],
**kwargs):
model = FourM(
encoder_embeddings=encoder_embeddings,
decoder_embeddings=decoder_embeddings,
encoder_depth=24,
decoder_depth=24,
dim=2048,
num_heads=32,
mlp_ratio=4,
qkv_bias=False,
proj_bias=False,
mlp_bias=False,
norm_layer=partial(LayerNorm, eps=1e-6, bias=False),
act_layer=nn.SiLU,
gated_mlp=True,
qk_norm=True,
**kwargs
)
return model |