File size: 8,029 Bytes
3424266
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# --------------------------------------------------------
# Based on the timm code base
# https://github.com/huggingface/pytorch-image-models
# --------------------------------------------------------
""" Transforms Factory
Factory methods for building image transforms for use with TIMM (PyTorch Image Models)

Hacked together by / Copyright 2020 Ross Wightman
"""
import math

import torch
from torchvision import transforms

from .auto_augment import (augment_and_mix_transform, auto_augment_transform,
                           rand_augment_transform)
from ..data_constants import (DEFAULT_CROP_PCT, IMAGENET_DEFAULT_MEAN,
                             IMAGENET_DEFAULT_STD)
from .random_erasing import RandomErasing
from .transforms import RandomResizedCropAndInterpolation, ToNumpy, _pil_interp


def transforms_noaug_train(
        img_size=224,
        interpolation='bilinear',
        use_prefetcher=False,
        mean=IMAGENET_DEFAULT_MEAN,
        std=IMAGENET_DEFAULT_STD,
):
    if interpolation == 'random':
        # random interpolation not supported with no-aug
        interpolation = 'bilinear'
    tfl = [
        transforms.Resize(img_size, _pil_interp(interpolation)),
        transforms.CenterCrop(img_size)
    ]
    if use_prefetcher:
        # prefetcher and collate will handle tensor conversion and norm
        tfl += [ToNumpy()]
    else:
        tfl += [
            transforms.ToTensor(),
            transforms.Normalize(
                mean=torch.tensor(mean),
                std=torch.tensor(std))
        ]
    return transforms.Compose(tfl)


def transforms_imagenet_train(
        img_size=224,
        scale=None,
        ratio=None,
        hflip=0.5,
        vflip=0.,
        color_jitter=0.4,
        auto_augment=None,
        interpolation='random',
        use_prefetcher=False,
        mean=IMAGENET_DEFAULT_MEAN,
        std=IMAGENET_DEFAULT_STD,
        re_prob=0.,
        re_mode='const',
        re_count=1,
        re_num_splits=0,
        separate=False,
):
    """
    If separate==True, the transforms are returned as a tuple of 3 separate transforms
    for use in a mixing dataset that passes
     * all data through the first (primary) transform, called the 'clean' data
     * a portion of the data through the secondary transform
     * normalizes and converts the branches above with the third, final transform
    """
    scale = tuple(scale or (0.08, 1.0))  # default imagenet scale range
    ratio = tuple(ratio or (3. / 4., 4. / 3.))  # default imagenet ratio range
    primary_tfl = [
        RandomResizedCropAndInterpolation(img_size, scale=scale, ratio=ratio, interpolation=interpolation)]
    if hflip > 0.:
        primary_tfl += [transforms.RandomHorizontalFlip(p=hflip)]
    if vflip > 0.:
        primary_tfl += [transforms.RandomVerticalFlip(p=vflip)]

    secondary_tfl = []
    if auto_augment:
        assert isinstance(auto_augment, str)
        if isinstance(img_size, (tuple, list)):
            img_size_min = min(img_size)
        else:
            img_size_min = img_size
        aa_params = dict(
            translate_const=int(img_size_min * 0.45),
            img_mean=tuple([min(255, round(255 * x)) for x in mean]),
        )
        if interpolation and interpolation != 'random':
            aa_params['interpolation'] = _pil_interp(interpolation)
        if auto_augment.startswith('rand'):
            secondary_tfl += [rand_augment_transform(auto_augment, aa_params)]
        elif auto_augment.startswith('augmix'):
            aa_params['translate_pct'] = 0.3
            secondary_tfl += [augment_and_mix_transform(auto_augment, aa_params)]
        else:
            secondary_tfl += [auto_augment_transform(auto_augment, aa_params)]
    elif color_jitter is not None:
        # color jitter is enabled when not using AA
        if isinstance(color_jitter, (list, tuple)):
            # color jitter should be a 3-tuple/list if spec brightness/contrast/saturation
            # or 4 if also augmenting hue
            assert len(color_jitter) in (3, 4)
        else:
            # if it's a scalar, duplicate for brightness, contrast, and saturation, no hue
            color_jitter = (float(color_jitter),) * 3
        secondary_tfl += [transforms.ColorJitter(*color_jitter)]

    final_tfl = []
    if use_prefetcher:
        # prefetcher and collate will handle tensor conversion and norm
        final_tfl += [ToNumpy()]
    else:
        final_tfl += [
            transforms.ToTensor(),
            transforms.Normalize(
                mean=torch.tensor(mean),
                std=torch.tensor(std))
        ]
        if re_prob > 0.:
            final_tfl.append(
                RandomErasing(re_prob, mode=re_mode, max_count=re_count, num_splits=re_num_splits, device='cpu'))

    if separate:
        return transforms.Compose(primary_tfl), transforms.Compose(secondary_tfl), transforms.Compose(final_tfl)
    else:
        return transforms.Compose(primary_tfl + secondary_tfl + final_tfl)


def transforms_imagenet_eval(
        img_size=224,
        crop_pct=None,
        interpolation='bilinear',
        use_prefetcher=False,
        mean=IMAGENET_DEFAULT_MEAN,
        std=IMAGENET_DEFAULT_STD):
    crop_pct = crop_pct or DEFAULT_CROP_PCT

    if isinstance(img_size, (tuple, list)):
        assert len(img_size) == 2
        if img_size[-1] == img_size[-2]:
            # fall-back to older behaviour so Resize scales to shortest edge if target is square
            scale_size = int(math.floor(img_size[0] / crop_pct))
        else:
            scale_size = tuple([int(x / crop_pct) for x in img_size])
    else:
        scale_size = int(math.floor(img_size / crop_pct))

    tfl = [
        transforms.Resize(scale_size, _pil_interp(interpolation)),
        transforms.CenterCrop(img_size),
    ]
    if use_prefetcher:
        # prefetcher and collate will handle tensor conversion and norm
        tfl += [ToNumpy()]
    else:
        tfl += [
            transforms.ToTensor(),
            transforms.Normalize(
                mean=torch.tensor(mean),
                std=torch.tensor(std))
        ]

    return transforms.Compose(tfl)


def create_transform(
        input_size,
        is_training=False,
        use_prefetcher=False,
        no_aug=False,
        scale=None,
        ratio=None,
        hflip=0.5,
        vflip=0.,
        color_jitter=0.4,
        auto_augment=None,
        interpolation='bilinear',
        mean=IMAGENET_DEFAULT_MEAN,
        std=IMAGENET_DEFAULT_STD,
        re_prob=0.,
        re_mode='const',
        re_count=1,
        re_num_splits=0,
        crop_pct=None,
        tf_preprocessing=False,
        separate=False):
    if isinstance(input_size, (tuple, list)):
        img_size = input_size[-2:]
    else:
        img_size = input_size


    if is_training and no_aug:
        assert not separate, "Cannot perform split augmentation with no_aug"
        transform = transforms_noaug_train(
            img_size,
            interpolation=interpolation,
            use_prefetcher=use_prefetcher,
            mean=mean,
            std=std)
    elif is_training:
        transform = transforms_imagenet_train(
            img_size,
            scale=scale,
            ratio=ratio,
            hflip=hflip,
            vflip=vflip,
            color_jitter=color_jitter,
            auto_augment=auto_augment,
            interpolation=interpolation,
            use_prefetcher=use_prefetcher,
            mean=mean,
            std=std,
            re_prob=re_prob,
            re_mode=re_mode,
            re_count=re_count,
            re_num_splits=re_num_splits,
            separate=separate)
    else:
        assert not separate, "Separate transforms not supported for validation preprocessing"
        transform = transforms_imagenet_eval(
            img_size,
            interpolation=interpolation,
            use_prefetcher=use_prefetcher,
            mean=mean,
            std=std,
            crop_pct=crop_pct)

    return transform